![2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁](http://file4.renrendoc.com/view/26c109c574892dd45580dd73132336ee/26c109c574892dd45580dd73132336ee1.gif)
![2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁](http://file4.renrendoc.com/view/26c109c574892dd45580dd73132336ee/26c109c574892dd45580dd73132336ee2.gif)
![2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁](http://file4.renrendoc.com/view/26c109c574892dd45580dd73132336ee/26c109c574892dd45580dd73132336ee3.gif)
![2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁](http://file4.renrendoc.com/view/26c109c574892dd45580dd73132336ee/26c109c574892dd45580dd73132336ee4.gif)
![2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁](http://file4.renrendoc.com/view/26c109c574892dd45580dd73132336ee/26c109c574892dd45580dd73132336ee5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年浙江省溫州市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
3.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
4.力偶對剛體產(chǎn)生哪種運(yùn)動效應(yīng)()。
A.既能使剛體轉(zhuǎn)動,又能使剛體移動B.與力產(chǎn)生的運(yùn)動效應(yīng)有時候相同,有時不同C.只能使剛體轉(zhuǎn)動D.只能使剛體移動
5.
6.A.A.>0B.<0C.=0D.不存在
7.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
8.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
9.極限等于().A.A.e1/2B.eC.e2D.1
10.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
11.A.A.
B.
C.
D.
12.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)
13.
14.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
15.
16.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)
17.A.A.x2+cosy
B.x2-cosy
C.x2+cosy+1
D.x2-cosy+1
18.設(shè)Y=e-5x,則dy=().
A.-5e-5xdx
B.-e-5xdx
C.e-5xdx
D.5e-5xdx
19.。A.
B.
C.
D.
20.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
二、填空題(20題)21.
22.
23.
24.
25.
26.設(shè)y=3+cosx,則y=.
27.
28.
29.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.
30.
31.過原點(diǎn)且與直線垂直的平面方程為______.
32.
33.
34.
35.
36.
37.
38.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.
39.
40.
三、計(jì)算題(20題)41.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
43.
44.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.證明:
49.
50.將f(x)=e-2X展開為x的冪級數(shù).
51.
52.
53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
54.求微分方程的通解.
55.
56.
57.
58.求曲線在點(diǎn)(1,3)處的切線方程.
59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
四、解答題(10題)61.
62.
63.
64.(本題滿分8分)
65.
66.設(shè)函數(shù)y=xsinx,求y'.
67.求y"-2y'-8y=0的通解.
68.
69.求微分方程的通解。
70.
五、高等數(shù)學(xué)(0題)71.以下結(jié)論正確的是()。
A.∫f"(x)dx=f(x)
B.
C.∫df(z)=f(x)
D.d∫f(x)dx=f(x)dx
六、解答題(0題)72.
參考答案
1.D解析:
2.C
3.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
4.A
5.B
6.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。
7.B
8.D
9.C本題考查的知識點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
10.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
11.B本題考查的知識點(diǎn)為級數(shù)收斂性的定義.
12.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由于存在,因此
可知應(yīng)選B.
13.B解析:
14.C
15.D
16.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。
17.A
18.A
【評析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對簡單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個層次的導(dǎo)數(shù),不要丟掉任何一個復(fù)合層次.
19.A本題考查的知識點(diǎn)為定積分換元積分法。
因此選A。
20.A
21.
22.
23.
24.-1本題考查了洛必達(dá)法則的知識點(diǎn).
25.f(x)+Cf(x)+C解析:
26.-sinX.
本題考查的知識點(diǎn)為導(dǎo)數(shù)運(yùn)算.
27.
28.(-35)(-3,5)解析:
29.2e2x本題考查的知識點(diǎn)為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對所給表達(dá)式兩端關(guān)于x求導(dǎo).
30.<0
31.2x+y-3z=0本題考查的知識點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
32.
33.
解析:
34.
35.
36.
37.
本題考查的知識點(diǎn)為定積分計(jì)算.
可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時,u=0;當(dāng)x=1時,u=2.因此
38.
;本題考查的知識點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
39.本題考查的知識點(diǎn)為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y一3z=0.
40.1
41.由等價無窮小量的定義可知
42.
列表:
說明
43.
44.
45.由二重積分物理意義知
46.
47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
51.由一階線性微分方程通解公式有
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
54.
55.
56.
57.
則
58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.
60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.
64.本題考查的知識點(diǎn)為求解-階線性微分方程.
所給方程為-階線性微分方程
65.
66.由于y=xsinx可得y'=x'sinx+x·(s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遠(yuǎn)程教育在寵物行業(yè)人才培養(yǎng)中的應(yīng)用
- 風(fēng)險導(dǎo)向下企業(yè)內(nèi)部財(cái)務(wù)控制的改進(jìn)措施研究
- 餐飲應(yīng)急預(yù)案
- 監(jiān)控施工方案范文(6篇)
- 二手機(jī)械銷售合同模板
- KTV裝修合同執(zhí)行管理制度范文
- 不銹鋼建筑材料加工合同
- 交通損害賠償合同示例
- 業(yè)務(wù)合作及分成合同書
- 個人創(chuàng)業(yè)借款合同條款
- 《電子技術(shù)基礎(chǔ)(第二版)》中職技工全套教學(xué)課件
- 人教版五年級上冊小數(shù)乘除法豎式計(jì)算題200道及答案
- 五年級上冊美術(shù)《傳統(tǒng)門飾》課件
- DL∕T 1309-2013 大型發(fā)電機(jī)組涉網(wǎng)保護(hù)技術(shù)規(guī)范
- (2020版)煤礦安全生產(chǎn)標(biāo)準(zhǔn)化管理體系評分表
- 城鄉(xiāng)低保待遇協(xié)議書
- DL-T5153-2014火力發(fā)電廠廠用電設(shè)計(jì)技術(shù)規(guī)程
- 華為HCIA-Storage H13-629考試練習(xí)題
- 遼寧省撫順五十中學(xué)2024屆中考化學(xué)全真模擬試卷含解析
- 2024年中國科學(xué)技術(shù)大學(xué)少年創(chuàng)新班數(shù)學(xué)試題真題(答案詳解)
- 2024年新疆維吾爾自治區(qū)成考(專升本)大學(xué)政治考試真題含解析
評論
0/150
提交評論