版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.0B.1C.2D.不存在
2.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
3.
4.
5.
6.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
7.
8.
9.A.A.4B.-4C.2D.-2
10.
11.
12.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.1
13.
14.
15.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
16.A.1
B.0
C.2
D.
17.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)18.A.0B.2C.2f(-1)D.2f(1)
19.函數(shù)等于().
A.0B.1C.2D.不存在20.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
二、填空題(20題)21.將積分改變積分順序,則I=______.
22.23.24.25.26.27.設(shè)=3,則a=________。28.________。29.設(shè)f(x)=x(x-1),則f'(1)=__________。
30.
31.32.33.34.
35.函數(shù)在x=0連續(xù),此時(shí)a=______.
36.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為________。
37.函數(shù)x=ln(1+x2-y2)的全微分dz=_________.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求曲線在點(diǎn)(1,3)處的切線方程.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則46.
47.證明:48.
49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
50.
51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.求微分方程y"-4y'+4y=e-2x的通解.
54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.求微分方程的通解.56.57.58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.將f(x)=e-2x展開為x的冪級(jí)數(shù).
62.
63.
64.
65.
66.求微分方程xy'-y=x2的通解.67.68.69.
70.五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
2.A由于
可知應(yīng)選A.
3.C
4.D解析:
5.A
6.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
7.D
8.A
9.D
10.C
11.A
12.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
13.B
14.B解析:
15.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
16.C
17.B
18.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
19.C解析:
20.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
21.
22.1
23.
24.
25.e-1/2
26.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
27.
28.
29.
30.
31.本題考查了改變積分順序的知識(shí)點(diǎn)。
32.
33.
34.
35.036.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。
37.
38.(2x+cosx)dx.
本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
39.y=1
40.
41.
42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
列表:
說明
44.由二重積分物理意義知
45.由等價(jià)無窮小量的定義可知
46.
則
47.
48.由一階線性微分方程通解公式有
49.
50.51.函數(shù)的定義域?yàn)?/p>
注意
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
53.解:原方程對(duì)應(yīng)的齊次方程為y"-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 競(jìng)聘手術(shù)室護(hù)長(zhǎng)
- 火災(zāi)案例與應(yīng)急管理分析
- 如何開展陽光體育活動(dòng)
- 華東師大版科學(xué)七年級(jí)上冊(cè)期末質(zhì)量評(píng)估試卷
- 電力安規(guī)熱力機(jī)械部分培訓(xùn)
- 眼眶手術(shù)術(shù)前護(hù)理常規(guī)
- 秦始皇統(tǒng)一中國(guó)
- 鋁金屬行業(yè)運(yùn)營(yíng)情況跟蹤及展望 202412 -大公國(guó)際
- 未來職業(yè)規(guī)劃主題班會(huì)
- 甜品創(chuàng)業(yè)規(guī)劃書
- 第二章 田徑-短跑途中跑技術(shù) 教案 2023-2024學(xué)年人教版初中體育與健康七年級(jí)全一冊(cè)
- 空運(yùn)陸運(yùn)操作崗位招聘面試題及回答建議(某大型國(guó)企)2024年
- 《元旦新氣象夢(mèng)想再起航》主題班會(huì)
- 2024年P(guān)MP項(xiàng)目管理師考試試卷及答案指導(dǎo)
- 2024-2030年中國(guó)集中供熱行業(yè)供需平衡與投資運(yùn)行模式規(guī)劃研究報(bào)告
- TCSRME 034-2023 隧道巖溶堵水注漿技術(shù)規(guī)程
- 藝坊尋美-藝術(shù)實(shí)踐體驗(yàn)坊智慧樹知到答案2024年黑龍江幼兒師范高等??茖W(xué)校
- 桂枝顆粒營(yíng)銷策略與品牌定位
- 墻布訂購合同協(xié)議書
- 腦血管造影課件
- 2024年《愛清潔》幼兒園小班兒歌教案
評(píng)論
0/150
提交評(píng)論