2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年河北省邢臺(tái)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

2.下列命題中正確的有().

3.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面

4.

5.

6.A.e2

B.e-2

C.1D.0

7.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2

8.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

9.A.0或1B.0或-1C.0或2D.1或-1

10.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

11.

12.A.A.π/4

B.π/2

C.π

D.2π

13.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

14.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

15.若,則下列命題中正確的有()。A.

B.

C.

D.

16.

有()個(gè)間斷點(diǎn)。

A.1B.2C.3D.4

17.

18.A.

B.

C.

D.

19.A.-1

B.0

C.

D.1

20.

二、填空題(20題)21.________.

22.

23.

24.

25.

26.設(shè)y=sin(2+x),則dy=.

27.______。

28.

29.

30.

31.設(shè)f(x,y,z)=xyyz,則

=_________.

32.

33.

34.設(shè)=3,則a=________。

35.

36.方程y'-ex-y=0的通解為_(kāi)____.

37.

38.

39.

40.

三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.

43.證明:

44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

48.

49.求微分方程的通解.

50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.

53.

54.

55.

56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

57.求曲線在點(diǎn)(1,3)處的切線方程.

58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

59.

60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

四、解答題(10題)61.

62.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.

63.

64.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求

65.

66.

67.求微分方程y"-y'-2y=ex的通解。

68.

69.求方程(y-x2y)y'=x的通解.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)f(x)的一個(gè)原函數(shù)是lnz,求∫f(x)f(x)dx。

六、解答題(0題)72.

參考答案

1.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

2.B解析:

3.B

4.A

5.C

6.A

7.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由題設(shè)知f'(x0)=1,又由題設(shè)條件知

可知應(yīng)選B.

8.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.

9.A

10.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

11.A

12.B

13.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤。

14.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

15.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

16.C

∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。

17.D解析:

18.C

19.C

20.D

21.

22.

23.

24.

25.

26.cos(2+x)dx

這類(lèi)問(wèn)題通常有兩種解法.

解法1

因此dy=cos(2+x)dx.

解法2利用微分運(yùn)算公式

dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.

27.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。

所求極限的表達(dá)式為分式,其分母的極限不為零。

因此

28.

29.e-6

30.2

31.

=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。

32.y=xe+Cy=xe+C解析:

33.

34.

35.-1

36.ey=ex+Cy'-ex-y=0,可改寫(xiě)為eydy=exdx,兩邊積分得ey=ex+C.

37.-sinx

38.

本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

39.3(x-1)-(y+2)+z=0(或3x-y+z=5).

本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.

所給直線z的方向向量s=(3,-1,1).若所求平面π垂直于直線1,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)+z=0稱(chēng)為平面的點(diǎn)法式方程,而后者3x-y+z-5=0

稱(chēng)為平面的-般式方程.

40.

41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.

44.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

45.

46.

47.

48.

49.

50.由二重積分物理意義知

51.函數(shù)的定義域?yàn)?/p>

注意

52.

53.

54.

55.

56.

57.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

58.

列表:

說(shuō)明

59.由一階線性微分方程通解公式有

60.由等價(jià)無(wú)窮小量的定義可知

61.

62.所給平面圖形如圖4-1中陰影部分所示.

由,可解得因此

:本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.這是常見(jiàn)的考試題型,考生應(yīng)該熟練掌握.

63.

64.

本題考查的知識(shí)點(diǎn)為求抽象函數(shù)的偏導(dǎo)數(shù).

已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.

解法1令f'i表示廠對(duì)第i個(gè)位置變?cè)?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論