版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
2.A.0
B.1
C.e
D.e2
3.
4.
5.A.0B.1C.2D.4
6.
7.設(shè)有直線
當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1
B.0
C.
D.一1
8.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
9.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
10.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
11.A.e-2
B.e-1
C.e
D.e2
12.
13.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
14.以下結(jié)論正確的是().
A.
B.
C.
D.
15.
16.
17.
18.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
19.
20.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
二、填空題(20題)21.22.設(shè)y=,則y=________。23.冪級(jí)數(shù)的收斂半徑為______.24.25.26.27.函數(shù)f(x)=x3-12x的極小值點(diǎn)x=_______.28.微分方程y"+y'=0的通解為______.29.設(shè)函數(shù)y=x2+sinx,則dy______.30.31.
32.
33.極限=________。
34.
35.
36.
37.
38.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
39.
40.設(shè)z=x2+y2-xy,則dz=__________。
三、計(jì)算題(20題)41.42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.46.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
48.
49.證明:50.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.
53.將f(x)=e-2X展開為x的冪級(jí)數(shù).54.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則59.求曲線在點(diǎn)(1,3)處的切線方程.60.求微分方程的通解.四、解答題(10題)61.
62.
63.
64.65.66.67.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
68.設(shè)ex-ey=siny,求y'。
69.
70.
五、高等數(shù)學(xué)(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合六、解答題(0題)72.
參考答案
1.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
z=y3x
是關(guān)于y的冪函數(shù),因此
故應(yīng)選D.
2.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.
3.B解析:
4.A
5.A本題考查了二重積分的知識(shí)點(diǎn)。
6.C
7.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.
8.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
9.C
10.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
11.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
12.B解析:
13.C
14.C
15.D解析:
16.D
17.A
18.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.
由定積分的對(duì)稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
19.C
20.B21.1/6
22.
23.
;
24.
25.
26.
27.22本題考查了函數(shù)的極值的知識(shí)點(diǎn)。f'(x)=3x2-12=3(x-2)(x+2),當(dāng)x=2或x=-2時(shí),f'(x)=0,當(dāng)x<-2時(shí),f'(x)>0;當(dāng)-2<x<2時(shí),f'(x)<0;當(dāng)x>2時(shí),f’(x)>0,因此x=2是極小值點(diǎn),28.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
微分方程為y"+y'=0.
特征方程為r3+r=0.
特征根r1=0.r2=-1.
因此所給微分方程的通解為
y=C1+C2e-x,
其牛C1,C2為任意常數(shù).29.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,
可知dy=(2x+cosx)dx.
解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.
30.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
31.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
32.33.因?yàn)樗髽O限中的x的變化趨勢(shì)是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時(shí),為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
34.
35.
解析:
36.1/61/6解析:
37.
解析:
38.1
39.(-33)(-3,3)解析:
40.(2x-y)dx+(2y-x)dy
41.
42.
43.
列表:
說明
44.
45.
46.由一階線性微分方程通解公式有
47.
48.
49.
50.
則
51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.
54.55.函數(shù)的定義域?yàn)?/p>
注意
56.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%57.由二重積分物理意義知
58.由等價(jià)無窮小量的定義可知59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.
62.
63.64.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標(biāo)系.
D可以表示為
解法2利用直角坐標(biāo)系.
如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意
可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡(jiǎn)便些.
本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:
右端被積函數(shù)中丟掉了r,這是考生應(yīng)該注意的問題.通常若區(qū)域可以表示為
65.66.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.切線方程為y+3=一3(x+1),或?qū)憺?x+y+6=0.求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市軌道交通建設(shè)委托管理合同
- 2024工裝裝修合同范文
- 2024個(gè)人房屋裝修合同范本
- 2024年度安徽省某項(xiàng)環(huán)保設(shè)施建筑工程施工合同
- 母嬰類課件教學(xué)課件
- 2024年員工保密責(zé)任協(xié)議書
- 2024年度計(jì)算機(jī)軟硬件采購(gòu)合同
- 2024年度應(yīng)急物流服務(wù)協(xié)議
- 2024年店鋪?zhàn)赓U協(xié)議(含裝修)
- 2024年度企業(yè)咨詢服務(wù)合同(戰(zhàn)略規(guī)劃)
- 只爭(zhēng)朝夕不負(fù)韶華崗位競(jìng)聘述職報(bào)告
- 農(nóng)場(chǎng)工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測(cè)真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識(shí)培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項(xiàng)
- 《股票入門》課件
- 《不為人知的間歇泉》課件
評(píng)論
0/150
提交評(píng)論