版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年四川省內(nèi)江市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.-(1/2)B.1/2C.-1D.2
2.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
3.當(dāng)x→0時(shí),3x是x的().
A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量
4.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
5.A.
B.0
C.ln2
D.-ln2
6.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()
A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定
7.
8.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
9.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
10.A.A.2B.1C.0D.-1
11.績效評(píng)估的第一個(gè)步驟是()
A.確定特定的績效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績D.公布考評(píng)結(jié)果,交流考評(píng)意見
12.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點(diǎn)用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上計(jì)算均正確
13.
14.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
15.
16.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
17.
18.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
19.A.3B.2C.1D.0
20.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
二、填空題(20題)21.設(shè),則y'=______.
22.
23.
24.
25.
26.
27.
28.級(jí)數(shù)的收斂半徑為______.
29.
30.
31.
32.
33.設(shè),則y'=______。
34.過點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.
35.
36.
37.
38.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。
39.
40.
三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.
42.求微分方程的通解.
43.證明:
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
48.
49.
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
51.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
55.將f(x)=e-2X展開為x的冪級(jí)數(shù).
56.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
58.
59.
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.判定y=x-sinx在[0,2π]上的單調(diào)性。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
=b,則a=_______,b=_________。
六、解答題(0題)72.
參考答案
1.A
2.C
3.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
4.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
5.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
6.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。
7.C解析:
8.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
9.A
10.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
11.A解析:績效評(píng)估的步驟:(1)確定特定的績效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績;(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績效評(píng)估的結(jié)論備案。
12.A
13.D
14.C
15.A
16.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
17.A
18.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
19.A
20.A
21.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
22.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
23.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
24.
25.1
26.
27.
28.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,由于
29.3
30.
31.
解析:
32.
解析:
33.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
34.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
35.
36.f(x)+Cf(x)+C解析:
37.
38.(03)
39.3
40.
41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.
44.函數(shù)的定義域?yàn)?/p>
注意
45.
46.
則
47.
48.
49.
50.由等價(jià)無窮小量的定義可知
51.
52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
53.
列表:
說明
54.由二重積分物理意義知
55.
56.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
57.
58.
59.
60.由一階線性微分方程通解公式有
61.
62.
63.
64.
65.
66.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度化妝品產(chǎn)品代言合同協(xié)議4篇
- 2025年度臨時(shí)餐飲場地租賃服務(wù)協(xié)議8篇
- 二零二五年度水電設(shè)施智能化改造合同3篇
- 二零二五版餐飲企業(yè)廚師招聘與人才輸送協(xié)議3篇
- 二零二四事業(yè)單位員工試用期人才引進(jìn)與培養(yǎng)合作協(xié)議3篇
- 2024石材荒料購銷及石材產(chǎn)品安全檢測服務(wù)合同3篇
- 2024蔬菜種植與農(nóng)產(chǎn)品加工企業(yè)銷售合作協(xié)議范本3篇
- 2024進(jìn)出口食品貿(mào)易合同
- 二零二五版合同法擔(dān)保條款設(shè)計(jì)-企業(yè)風(fēng)險(xiǎn)控制策略3篇
- 二零二五年度在線教育平臺(tái)股權(quán)收購合同3篇
- GB/T 37238-2018篡改(污損)文件鑒定技術(shù)規(guī)范
- 普通高中地理課程標(biāo)準(zhǔn)簡介(湘教版)
- 河道治理工程監(jiān)理通知單、回復(fù)單范本
- 超分子化學(xué)簡介課件
- 高二下學(xué)期英語閱讀提升練習(xí)(一)
- 易制爆化學(xué)品合法用途說明
- 【PPT】壓力性損傷預(yù)防敷料選擇和剪裁技巧
- 大氣喜慶迎新元旦晚會(huì)PPT背景
- DB13(J)∕T 242-2019 鋼絲網(wǎng)架復(fù)合保溫板應(yīng)用技術(shù)規(guī)程
- 心電圖中的pan-tompkins算法介紹
- 羊絨性能對(duì)織物起球的影響
評(píng)論
0/150
提交評(píng)論