高二文科數(shù)學(xué)教案例文_第1頁
高二文科數(shù)學(xué)教案例文_第2頁
高二文科數(shù)學(xué)教案例文_第3頁
高二文科數(shù)學(xué)教案例文_第4頁
高二文科數(shù)學(xué)教案例文_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

WORD(可編輯版本)———高二文科數(shù)學(xué)教案例文教學(xué)中學(xué)生的個(gè)體差異是客觀存在的。在承認(rèn)差異存在、尊重學(xué)習(xí)個(gè)體差異的前提下,超越個(gè)體差異,以促進(jìn)全體學(xué)生的全面發(fā)展,應(yīng)是我們努力的新方向。今天我在這里整理了一些高二文科數(shù)學(xué)教案最新例文,我們一起來看看吧!

高二文科數(shù)學(xué)教案最新例文1

教學(xué)目標(biāo)

(1)了解算法的含義,體會(huì)算法思想.

(2)會(huì)用自然語言和數(shù)學(xué)語言描述簡(jiǎn)易具體問題的算法;

(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力

教學(xué)重難點(diǎn)

重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì).

難點(diǎn):把自然語言轉(zhuǎn)化為算法語言.

情境導(dǎo)入

電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來說也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手.作為一名狙擊手,要想勝利地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

第二步:瞄準(zhǔn)目標(biāo);

第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;

第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

第五步:開槍;

第六步:迅速轉(zhuǎn)移(或隱蔽).

以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法.

●課堂探究

預(yù)習(xí)提升

1.定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問題.

2.描述方式

自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖.

3.算法的要求

(1)寫出的算法,務(wù)必能解決一類問題,且能重復(fù)使用;

(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,務(wù)必確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果.

4.算法的特征

(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束.

(2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟務(wù)必是確定的.

(3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果.

(4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù).

(5)不性:解決同一問題的算法可以是不的.

高二文科數(shù)學(xué)教案最新例文2

第1課時(shí)算法的概念

核心必知

1.預(yù)習(xí)教材,問題導(dǎo)入

根據(jù)以下提綱,預(yù)習(xí)教材P2~P5,回答下列問題.

(1)對(duì)于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?

提示:分五步完成:

第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

(2)在數(shù)學(xué)中算法通常指什么?

提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.

2.歸納總結(jié),核心必記

(1)算法的概念

12世紀(jì)

的算法指的是用阿拉伯?dāng)?shù)字進(jìn)行算術(shù)運(yùn)算的過程

續(xù)表

數(shù)學(xué)中

的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟

現(xiàn)代算法通??梢跃幊捎?jì)算機(jī)程序,讓計(jì)算機(jī)執(zhí)行并解決問題

(2)設(shè)計(jì)算法的目的

計(jì)算機(jī)解決任何問題都要依賴于算法.只有將解決問題的過程分解為若干個(gè)明確的步驟,即算法,并用計(jì)算機(jī)能夠接受的“語言”準(zhǔn)確地描述出來,計(jì)算機(jī)才能夠解決問題.

問題思考

(1)求解某一個(gè)問題的算法是否是的?

提示:不是.

(2)任何問題都可以設(shè)計(jì)算法解決嗎?

提示:不一定.

課前反思

通過以上預(yù)習(xí),務(wù)必精通的幾個(gè)知識(shí)點(diǎn):

(1)算法的概念:;

(2)設(shè)計(jì)算法的目的:.

思考1應(yīng)從哪些方面來理解算法的概念?

名師指津:對(duì)算法概念的三點(diǎn)說明:

(1)算法是指可以用計(jì)算機(jī)來解決的某一類問題的程序或步驟,這些程序或步驟務(wù)必是明確的和有效的,而且能夠在有限步驟之內(nèi)完成.

(2)算法與一般意義上具體問題的解法既有聯(lián)系,又有區(qū)別,它們之間是一般和特殊的關(guān)系,也是抽象與具體的關(guān)系.算法的獲得要借助一般意義上具體問題的求解方法,而任何一個(gè)具體問題都可以利用這類問題的一般算法來解決.

(3)算法一方面具有具體化、程序化、機(jī)械化的特點(diǎn),同時(shí)又有高度的抽象性、概括性、精確性,所以算法在解決問題中更具有條理性、邏輯性的特點(diǎn).

思考2算法有哪些特征?

名師指津:(1)確定性:算法的每一個(gè)步驟都是確切的,能有效執(zhí)行且得到確定結(jié)果,不能模棱兩可.

(2)有限性:算法應(yīng)由有限步組成,至少對(duì)某些輸入,算法應(yīng)在有限多步內(nèi)結(jié)束,并給出計(jì)算結(jié)果.

(3)邏輯性:算法從初始步驟開始,分為若干明確的步驟,每一步都只能有一個(gè)確定的繼任者,只有執(zhí)行完前一步才能進(jìn)入到后一步,并且每一步都確定無誤后,才能解決問題.

(4)不性:求解某一個(gè)問題的算法不一定只有的一個(gè),可以有不同的算法.

(5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決.

講一講

1.以下關(guān)于算法的說法正確的是()

A.描述算法可以有不同的方式,可用自然語言也可用其他語言

B.算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列只能解決當(dāng)前問題

C.算法過程要一步一步執(zhí)行,每一步執(zhí)行的操作務(wù)必確切,不能含混不清,而且經(jīng)過有限步或無限步后能得出結(jié)果

D.算法要求按部就班地做,每一步可以有不同的結(jié)果

嘗試解答算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或計(jì)算序列能夠解決一類問題,故B不正確.

算法過程要一步一步執(zhí)行,每一步執(zhí)行操作,務(wù)必確切,只能有結(jié)果,而且經(jīng)過有限步后,務(wù)必有結(jié)果輸出后終止,故C、D都不正確.

描述算法可以有不同的語言形式,如自然語言、框圖語言等,故A正確.

答案:A

判斷算法的關(guān)注點(diǎn)

(1)明確算法的含義及算法的特征;

(2)判斷一個(gè)問題是否是算法,關(guān)鍵看是否有解決一類問題的程序或步驟,這些程序或步驟務(wù)必是明確和有效的,而且能夠在有限步內(nèi)完成.

練一練

1.(2016?西南師大附中檢測(cè))下列描述不能看作算法的是()

A.洗衣機(jī)的使用說明書

B.解方程x2+2x-1=0

C.做米飯需要刷鍋、淘米、添水、加熱這些步驟

D.利用公式S=πr2計(jì)算半徑為3的圓的面積,就是計(jì)算π×32

解析:選BA、C、D都描述了解決問題的過程,可以看作算法,而B只描述了一個(gè)事例,沒有說明怎樣解決問題,不是算法.

假設(shè)家中生火泡茶有以下幾個(gè)步驟:

a.生火b.將水倒入鍋中c.找茶葉d.洗茶壺、茶碗e.用開水沖茶

思考1你能設(shè)計(jì)出在家中泡茶的步驟嗎?

名師指津:a→a→c→d→e

思考2設(shè)計(jì)算法有什么要求?

名師指津:(1)寫出的算法務(wù)必能解決一類問題;

(2)要使算法盡量簡(jiǎn)易、步驟盡量少;

(3)要保證算法步驟有效,且計(jì)算機(jī)能夠執(zhí)行.

講一講

2.寫出解方程x2-2x-3=0的一個(gè)算法.

嘗試解答法一:算法如下.

第一步,將方程左邊因式分解,得(x-3)(x+1)=0;①

第二步,由①得x-3=0,②或x+1=0;③

第三步,解②得x=3,解③得x=-1.

法二:算法如下.

第一步,移項(xiàng),得x2-2x=3;①

第二步,①式兩邊同時(shí)加1并配方,得(x-1)2=4;②

第三步,②式兩邊開方,得x-1=±2;③

第四步,解③得x=3或x=-1.

法三:算法如下.

第一步,計(jì)算方程的判別式并判斷其符號(hào)Δ=(-2)2+4×3=160;

第二步,將a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.

設(shè)計(jì)算法的步驟

(1)認(rèn)真分析問題,找出解決此題的一般數(shù)學(xué)方法;

(2)借助有關(guān)變量或參數(shù)對(duì)算法加以表述;

(3)將解決問題的過程劃分為若干步驟;

(4)用簡(jiǎn)練的語言將步驟表示出來.

練一練

2.設(shè)計(jì)一個(gè)算法,判斷7是否為質(zhì)數(shù).

解:第一步,用2除7,得到余數(shù)1,所以2不能整除7.

第二步,用3除7,得到余數(shù)1,所以3不能整除7.

第三步,用4除7,得到余數(shù)3,所以4不能整除7.

第四步,用5除7,得到余數(shù)2,所以5不能整除7.

第五步,用6除7,得到余數(shù)1,所以6不能整除7.

因此,7是質(zhì)數(shù).

講一講

3.一次青青草原草原長(zhǎng)包包大人帶著灰太狼、懶羊羊和一捆青草過河.河邊只有一條船,由于船太小,只能裝下兩樣?xùn)|西.在無人看管的狀況下,灰太狼要吃懶羊羊,懶羊羊要吃青草,請(qǐng)問包包大人如何才能帶著他們平安過河?試設(shè)計(jì)一種算法.

思路點(diǎn)撥先根據(jù)條件建立過程模型,再設(shè)計(jì)算法.

嘗試解答包包大人采取的過河的算法可以是:

第一步,包包大人帶懶羊羊過河;

第二步,包包大人自己返回;

第三步,包包大人帶青草過河;

第四步,包包大人帶懶羊羊返回;

第五步,包包大人帶灰太狼過河;

第六步,包包大人自己返回;

第七步,包包大人帶懶羊羊過河.

實(shí)際問題算法的設(shè)計(jì)技巧

(1)弄清題目中所給要求.

(2)建立過程模型.

(3)根據(jù)過程模型建立算法步驟,必要時(shí)由變量進(jìn)行判斷.

練一練

3.一位商人有9枚銀元,其中有1枚略輕的是假銀元,你能用天平(無砝碼)將假銀元找出來嗎?

解:法一:算法如下.

第一步,任取2枚銀元分別放在天平的兩邊,若天平左、右不平衡,則輕的一枚就是假銀元,若天平平衡,則進(jìn)行第二步.

第二步,取下右邊的銀元放在一邊,然后把剩下的7枚銀元依次放在右邊進(jìn)行稱量,直到天平不平衡,偏輕的那一枚就是假銀元.

法二:算法如下.

第一步,把9枚銀元平均分成3組,每組3枚.

第二步,先將其中兩組放在天平的兩邊,若天平不平衡,則假銀元就在輕的那一組;否則假銀元在未稱量的那一組.

第三步,取出含假銀元的那一組,從中任取2枚銀元放在天平左、右兩邊稱量,若天平不平衡,則假銀元在輕的那一邊;若天平平衡,則未稱量的那一枚是假銀元.

高二文科數(shù)學(xué)教案最新例文3

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社平凡高中課程標(biāo)準(zhǔn)試驗(yàn)教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和精通了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

【教學(xué)目標(biāo)】

依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際狀況,特確定如下目標(biāo):

知識(shí)與技能目標(biāo):理解精通基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

過程與方法目標(biāo):通過探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過程,培養(yǎng)分析、解決問題的能力;

情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

【教學(xué)重難點(diǎn)】

重點(diǎn):理解精通基本不等式,能借助幾何圖形說明基本不等式的意義。

難點(diǎn):利用基本不等式推導(dǎo)不等式.

關(guān)鍵是對(duì)基本不等式的理解精通.

二、教法分析

本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。利用多媒體幫助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率.

三、學(xué)法指導(dǎo)

新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

四、教學(xué)過程

教學(xué)過程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

具體過程安排如下:

(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問題

設(shè)計(jì)意圖:數(shù)學(xué)教育務(wù)必基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是援助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

上圖是在北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客。

問題1請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組談?wù)?

(二)探究問題,抽象歸納

基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系

形的角度(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)

數(shù)的角度

問題2若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?

學(xué)生談?wù)摻Y(jié)果:。

問題3大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)

咱們?cè)倏匆豢磮D形的變化,(教師演示)

(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

2.抽象歸納:

一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

問題4你能給出它的證明嗎?

學(xué)生在黑板上板書。

問題5特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?

學(xué)生歸納得出。

設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

【歸納總結(jié)】

如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

3.探究基本不等式證明方法:

問題6如何證明基本不等式?

設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。

方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開證明。

方法二:分析法

要證

只要證2

要證,只要證2

要證,只要證

明顯,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。

4.理解升華

1)文字語言敘述:

兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

2)符號(hào)語言敘述:

若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

問題7怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組談?wù)摚涣骺捶?,師生總結(jié))

“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

當(dāng)a=b時(shí),取等號(hào),即;

僅當(dāng)a=b時(shí),取等號(hào),即。

3)探究基本不等式的幾何意義:

基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。

如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),

CD⊥AB,AC=a,CB=b,

問題8你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

(教師演示,學(xué)生直觀感覺)

易證RtACDRtDCB,那么CD2=CA·CB

即CD=.

這個(gè)圓的半徑為,明顯,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.

因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.

4)聯(lián)想數(shù)列的知識(shí)理解基本不等式

從形的角度來看,基本不等式具有特定的幾何意義;從數(shù)的角度來看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.

問題9回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過“和”與“積”的結(jié)構(gòu)?

歸納得出:

均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).

基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用

例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)

(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,

,過作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?

設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。

(五)演練反饋,鞏固深化

公式應(yīng)用之一:

1.試判斷與與2的大小關(guān)系?

問題:如果將條件“x0”去掉,上述結(jié)論是否依舊成立?

2.試判斷與7的大小關(guān)系?

公式應(yīng)用之二:

設(shè)計(jì)意圖:新奇有趣、簡(jiǎn)易易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

(1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實(shí)際重量輕了還是重了?

(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷.甲商場(chǎng)采取的促銷方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0

≠q)

(五)反思總結(jié),整合新知:

通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要請(qǐng)教?

設(shè)計(jì)意圖:通過反思、歸納,培養(yǎng)概括能力;援助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生精通本節(jié)課的重點(diǎn),突破難點(diǎn)

老師根據(jù)狀況完善如下:

知識(shí)要點(diǎn):

(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征

(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義

思想方法技巧:

(1)數(shù)形結(jié)合思想、“整體與局部”

(2)歸納與類比思想

(3)換元法、比較法、分析法

(七)布置作業(yè),更上一層

1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)

2.書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)

3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?

設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

五、評(píng)價(jià)分析

1.在建立新知的過程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來分析問題、解決問題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體狀況,力爭(zhēng)提問準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和精通在不斷的思考和談?wù)撝型晟坪图由睢?/p>

2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解?!皵?shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠精通并且會(huì)用的,只有學(xué)生通過實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問題時(shí)去嘗試使用,只有通過不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到精通它的目的。

六、板書設(shè)計(jì)

§3.3基本不等式

一、重要不等式

二、基本不等式

1.文字語言敘述

2.符號(hào)語言敘述

3.幾何意義

4.代數(shù)解釋

三、應(yīng)用舉例

例1.

四、演練反饋

五、總結(jié)歸納

1.知識(shí)要點(diǎn)

2.思想方法

高二文科數(shù)學(xué)教案最新例文4

學(xué)習(xí)目標(biāo):

1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法2、能敘述隨機(jī)變量的定義

3、能說出隨機(jī)變量與函數(shù)的關(guān)系,4、能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

重點(diǎn):能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

難點(diǎn):隨機(jī)事件概念的透徹理解及對(duì)隨機(jī)變量引入目的的認(rèn)識(shí):

環(huán)節(jié)一:隨機(jī)變量的定義

1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義

2能敘述隨機(jī)變量的定義

3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個(gè)隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?

2、分析理解中的兩個(gè)隨機(jī)現(xiàn)象的隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對(duì)應(yīng)關(guān)系?

總結(jié):

3、隨機(jī)變量

(1)定義:

這種對(duì)應(yīng)稱為一個(gè)隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個(gè)可能的結(jié)果所組成的

到的映射。

(2)表示:隨機(jī)變量常用大寫字母.等表示.

(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

函數(shù)隨機(jī)變量

自變量

因變量

因變量的范圍

相同點(diǎn)都是映射都是映射

環(huán)節(jié)二隨機(jī)變量的應(yīng)用

1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件

例1:已知在10件產(chǎn)品中有2件不合格品?,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個(gè)隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。

變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個(gè)隨機(jī)現(xiàn)象。若Y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機(jī)變量描述上述結(jié)果

例2連續(xù)投擲一枚勻稱的硬幣兩次,用X表示這兩次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變

量,分別說明下列集合所代表的隨機(jī)事件:

(1){X=0}(2){X=1}

(3){X2}(4){X0}

變式:連續(xù)投擲一枚勻稱的硬幣三次,用X表示這三次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變量,X的可能取值是?并說明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.

練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。

(1)從學(xué)?;丶乙?jīng)過5個(gè)紅綠燈路口,可能遇到紅燈的次數(shù);

(2)一個(gè)袋中裝有5只同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論