版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
y=by=b一
2019年福中畢測(cè)數(shù)(科試解第卷選題本題12小題,每題5分共60分在小給的個(gè)選中只一項(xiàng)符題要的1.知集合Axx1
2
x20
,則
=(A.
1
B.
x1x
C.
1x
D.
x12.復(fù)數(shù)zz3i|z|(A.
C.2
D.23.
為弘揚(yáng)中華民族傳統(tǒng)文化,某中學(xué)生會(huì)對(duì)本校高一年級(jí)1000名生課余時(shí)間參加傳統(tǒng)文化活動(dòng)的情況,隨機(jī)抽取50名學(xué)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:參加場(chǎng)數(shù)246參加人數(shù)占調(diào)查人數(shù)的百分比8%10%20%26%18%12%
4%2%估計(jì)該校高一學(xué)生參加傳統(tǒng)文化動(dòng)情況正確的是參活動(dòng)次數(shù)是3場(chǎng)生約加活動(dòng)次數(shù)是2場(chǎng)4場(chǎng)生約為人加活動(dòng)次數(shù)不高于場(chǎng)的生為280參活動(dòng)次數(shù)不低于場(chǎng)的生為360
.4.知雙曲線
:
2ya2b2
0)
,直線與
的兩條漸近線的交點(diǎn)分別為M
,
為坐標(biāo)原點(diǎn).若
為直角三角形,則C
的離心率為(A.
2
B.
3
C.
2
D.
55.知數(shù)列
a中n3
=2,7
數(shù)列}為數(shù)列,則a=(9nA.
12
B.
54
C.
45
D.
456.知
sin(
6
)
1,且,22
)
(第共23頁
已知函數(shù)xf
為
f
C.1的導(dǎo)函數(shù),則函數(shù)f
的部分圖象大致為).ABD
在邊長(zhǎng)為
的等邊中,點(diǎn)M滿MA,則A
B.2
C.6
D.
如圖,線段MN是半徑為的圓O的條弦,且MN的為2在O內(nèi)將線段MN繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)動(dòng),使點(diǎn)M移到圓上的新位置,繼續(xù)將線段NM繞M點(diǎn)逆時(shí)針方向轉(zhuǎn)動(dòng)使移到圓上的新位置依繼續(xù)轉(zhuǎn)動(dòng)點(diǎn)M的跡所圍成的區(qū)域是圖中陰影部分若在圓O隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分內(nèi)的概率為(
4
-63
C.
3310.已知函
x,fx2
,當(dāng)
f
恒成立,則實(shí)數(shù)的值范圍是()
.
C.
11.已知
FF1
為橢圓
4
的左焦點(diǎn)P是橢圓上異于頂點(diǎn)任意一點(diǎn)點(diǎn)是
1內(nèi)切圓的圓心,過F作MPK1
于M,O
是坐標(biāo)原點(diǎn),則OM的取值范圍為(A.
3
3.12.如圖,長(zhǎng)為1正體ABCDABD的塊平面過點(diǎn)D且行于平面ACD,則木塊在平面內(nèi)正投影面積是(
32
C.
第題第頁共23頁
第卷本包必題選題部.~21題必題每試考都須答第、23題選題考根要作.二、填空題:本大題題,每小題5分,共分.把答案填在答題卡相應(yīng)位置.13.若實(shí)數(shù)y
滿足約束條件
xyxy
,則zy
的最小值等于.
xy14.知長(zhǎng)方體ABCDCD的外接球體積為
A
直線A與面C所成的角為______.15.函數(shù)()xcos象,則.
Ra的象向左平移個(gè)位長(zhǎng)度,得到一個(gè)偶函數(shù)圖16.知數(shù)列
項(xiàng)為S,
a,Sn
(為常數(shù)數(shù)
n,且n
n
,則滿足條件的的值合_.三解題解應(yīng)出字明證過或算驟17.本小題滿分分)在中=90點(diǎn)D,分在邊,BC上,CE且的積為3.(1求邊DE長(zhǎng);(2若AD,sin的.第頁共23頁
18.本小題滿分分)峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天小劃分成兩個(gè)時(shí)間段,把8—22共小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào):—次:共10個(gè)時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對(duì)峰谷電價(jià)的使用情況,從某市一小區(qū)機(jī)抽取了50戶戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以[100,300),,700),[700,度分組的率分布直方圖如下:若將小區(qū)月平均用電量不低于700度住戶稱大戶月均用電量低于度的住戶稱為一般用戶.其中,使用峰谷電價(jià)的戶數(shù)如下表:月平均用電度使用峰谷電價(jià)的戶
9132數(shù)(1估計(jì)所抽取的戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表(2i)“般用”和大戶的數(shù)填入下面2的聯(lián)表:一般用戶
大用戶使用峰谷電價(jià)的用戶不使用峰谷電價(jià)的用戶(ii根據(jù)(i)的列聯(lián)表,能否有99%的握認(rèn)為“用量的高低與使峰谷電有關(guān)?第頁共23頁
附:K
())(a)(b)
,
Dk
MFA
BE19.(本小題滿分分)如圖,四棱錐E,面平ABE,邊為矩形,AD=6BE,F(xiàn)為CE上的點(diǎn),且BF面.(1求證:BE;
,AB=5
,(2設(shè)M在段,且滿足EMMD試在線段上定一點(diǎn)N,得MN
平面
,并求
的長(zhǎng)20.本小題滿分分)已知拋物線
1
:
py(
和圓
x+1+y
,斜角為
的直線
l
過
1
的焦點(diǎn)且與相.(1求
的值;(2)
M
在
C
的準(zhǔn)線上,動(dòng)點(diǎn)
A
在
1
上,
1
在A
點(diǎn)處的切線
l
交
軸于點(diǎn)B
,設(shè)MAMB求證:點(diǎn)N在定直線上,并求該定直線的方程.21.本小題滿分分已知函數(shù)
f()ln
x
(R)
.第頁共23頁
(1求函數(shù)
fx)
的單調(diào)區(qū)間;()
e時(shí),關(guān)于的程
f(
有兩個(gè)不同的實(shí)數(shù)解
,求證:x11
(二選考題共分請(qǐng)生第、題中選題答如果做則所第個(gè)目分22.[選修4:標(biāo)系與參數(shù)方程](10分在直角坐標(biāo)系xOy
中,直線l參數(shù)方程為
1xtyat
(t為數(shù),aR.坐標(biāo)原點(diǎn)為極點(diǎn),x
軸正半軸為極軸建立極坐標(biāo)系的坐標(biāo)方程為
交于
O,
兩點(diǎn),直線
l
與曲線C
相交于
AB
兩點(diǎn)(1求直線l的通方程和曲線的直角坐標(biāo)方程(2當(dāng)ABOP時(shí)求a值.選修4
:不等式選講]分已知不等式
2x2x
的解集為M(1求集合;(2設(shè)實(shí)數(shù)a,b,明:b.第頁共23頁
==b==b二
年班質(zhì)測(cè)數(shù)(科試參答第卷選題本題12小題每題5分共60分在小給的個(gè)項(xiàng),有項(xiàng)符題要的1.D5.C6.C7.A12.A13.已知集
A
B
=(
C.
滿足(3+i),則【簡(jiǎn)解】B14.設(shè)復(fù)數(shù)z
,所以A
B
,故選D.
B.
C.2
2【簡(jiǎn)解一】因?yàn)?/p>
z
33+i
=
,所以z
,故選【簡(jiǎn)解二】因?yàn)?3+i)z,所以(3+i)(3+i)=,以z,選B.15.
為弘揚(yáng)中華民族傳統(tǒng)文化,某中學(xué)學(xué)生會(huì)對(duì)本校高一年級(jí)1000名生課余時(shí)間參加傳統(tǒng)文化活動(dòng)的情況,隨機(jī)抽取名生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:參加場(chǎng)數(shù)
13456參加人數(shù)占調(diào)查人數(shù)的百分比20%26%%
4%估計(jì)該校高一學(xué)生參加傳統(tǒng)文化活動(dòng)情況正確的是參活動(dòng)次數(shù)是的學(xué)生約為人參活動(dòng)次數(shù)是2場(chǎng)或場(chǎng)學(xué)生約為人C.參加活動(dòng)次數(shù)不高于場(chǎng)的學(xué)生約為280人參活動(dòng)次數(shù)不低于場(chǎng)的學(xué)生約為人
.【簡(jiǎn)解】估計(jì)該校高一學(xué)生參加活動(dòng)次數(shù)不低于場(chǎng)學(xué)生約為:+0.12+0.04+0.02)=360
人,故選16.已知雙線C:
x2ba2
,直線與C的條漸近線的交點(diǎn)分別M,
,第頁共23頁
,且33,,且33,O
為坐標(biāo)原點(diǎn).若
為直角三角形,則C的心率為(
2
C.
【簡(jiǎn)解依意得因直角三角形,所以雙曲線的近線為
=
,即C是軸雙曲線,所以的心率
e
2
,故選A17.已知數(shù)
{}中a3
=2,
.若數(shù)列{}為差數(shù)列,則=(
12
54
C.
45
45【簡(jiǎn)解】依題意得:
a
,因?yàn)閿?shù)列{}為等數(shù)列,n所以
a17,所以978aa9
,所以
a
45
,故選C18.已知
,且cos()2C.
(
【簡(jiǎn)解一】由
10,62
π得,,代入cos3
得,
=
,故選【簡(jiǎn)解二】由
π122
得,
π
,所以
π
πcoscos6666
,故選.19.已知函f
為
f
的導(dǎo)函數(shù),則函數(shù)f
的部分圖象大致為).第頁共23頁
ABD【簡(jiǎn)解】依題意得:f
sincos為奇函數(shù),排除D,設(shè)g()則g
x
,除
B
,故選A20.在邊長(zhǎng)3
的等邊中點(diǎn)M滿足BMMA,則CMA
32
B.2
C.
D.
【簡(jiǎn)解一】依題意得:2112CMCBCA)CA,選.333232【簡(jiǎn)解二】依意得:以C為原點(diǎn),CA所在的直線為軸建平面角直角標(biāo),則53),),25所以CM,,故選D.22【簡(jiǎn)解三】依題意得:過M點(diǎn)MDAC于D,圖所示,則
B
MCM(3cos60)
,故選D.
C
D
A21.如圖,段MN是半徑為2的的條弦,且MN的為2在O內(nèi)將線段MN繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)動(dòng),使點(diǎn)M移到圓上的新位置,繼續(xù)將線段NM繞M點(diǎn)逆時(shí)針方向轉(zhuǎn)動(dòng)使移到圓上的新位置依繼續(xù)轉(zhuǎn)動(dòng)點(diǎn)M的跡所圍成的區(qū)域是圖中陰影部分若在圓O隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分內(nèi)的概率為(
4
-63
C.
33【簡(jiǎn)解一】依題意得:陰影部分的面積
1S(6
]=432P
3
,故選B.【簡(jiǎn)解二】依題意得:陰影部分的面積
S
3P
3
,故選B.第頁共23頁
12221212221222.已知函
f
,
,當(dāng)
f
恒
成立,則實(shí)數(shù)的值范圍是()
.
C.
【簡(jiǎn)解】依題意得:函數(shù)
f
在
上單調(diào)遞減,
因?yàn)?/p>
f
,所以
,即
2x,以2(
,即
,故選B23.已知
FF1
為橢圓
4
的
左、右焦點(diǎn),P是圓上異于頂點(diǎn)的任意一點(diǎn)點(diǎn)是
PF
內(nèi)切圓的圓心過F作FMPK11
于M,
是坐標(biāo)原點(diǎn)
OM的取值范圍為(A.
3
3【簡(jiǎn)解】如圖,延長(zhǎng)
P,FM
相交于N
點(diǎn),連接M
,因?yàn)镵點(diǎn)是
PF
內(nèi)切圓的圓心,所以PK
平分
PF12
,∵∴
FM,PNPF,M
F
中點(diǎn),∵為FF中,為FN中,21∴
1PFPFPFFF32
,∴OM的值范圍為24.如圖棱長(zhǎng)為正體ABD的塊面過
點(diǎn)D且平行于平面
,則木塊在平面內(nèi)的正投影面積是
(
32
C.
第題第10頁共23頁
A2minA2min【簡(jiǎn)解長(zhǎng)1正體BCD的塊的三個(gè)面在平面內(nèi)正投影是三個(gè)全的菱形(如圖可以看成兩個(gè)邊長(zhǎng)1222=3.22
的等邊三角形,所以木塊在內(nèi)的正投影面積是第卷本包必題選題部.~21題必題每試考都須答第、23題選題考根要作.三、填空題:本大題題,每小題5分,共分.把答案填在答題卡相應(yīng)位置.13.
14.
16.
13.若實(shí)數(shù)y
滿足約束條件
xyxy
,則zy
的最小值等于______
xy【簡(jiǎn)解】依題意,可行域?yàn)槿鐖D所示的陰影部分的三
角形區(qū)域目函數(shù)化為:
x
則
的最小值即為
動(dòng)直線在軸的截距的最大值.通平移可知在點(diǎn)
動(dòng)直線在軸的截距最大:
xx
解得z
1,所以1722
x.
的最小值22.知長(zhǎng)方體ABCDCD的外接球體積為
A
直線A與面C所成的角為_.第11頁共23頁
00【簡(jiǎn)解】設(shè)長(zhǎng)方體ACD的接球半徑為
,因?yàn)殚L(zhǎng)方體ABCDBCD的接球體積為
3所即C=2BC2ABR,因?yàn)锽C所以AB2
因?yàn)槠矫鍮BC,以C平面所成的角為,在eq\o\ac(△,Rt)ACB中,因?yàn)?1
BC2,以B2,以ACB=11
.23.函數(shù)()xcos
Ra的象向左平移個(gè)單位長(zhǎng)度,得到一個(gè)偶函數(shù)圖象,則
______.【簡(jiǎn)解】因?yàn)?/p>
f(x)cosR
的圖象向左平移
單位長(zhǎng)度,得到偶函數(shù)圖象,所以函數(shù)
f(x)cos
的對(duì)稱軸為x
,b所以f()sin=f(0)=b因?yàn)椋裕?a24.知數(shù)列
的前n項(xiàng)為,
a,且(為數(shù).?dāng)?shù)列
滿足n
n,b
,則滿足條件的的值集合_.【簡(jiǎn)解】因?yàn)?/p>
,且S1n
a(常n所以
a
,解得
,所以
a,所以S
a
,所以
a
,所以
an
n
,因?yàn)?/p>
ab
,所以
2
,所以b+1
nn+28(nn2n
,解得
4
,又因?yàn)镹
*
,所以或n.所以,當(dāng)n=5或n=6時(shí),
n
n
,即滿足條件的的值集合為三解題解應(yīng)出字明證過或算驟第12頁共23頁
25.本小題滿分分)在中=90(1求邊DE長(zhǎng);
點(diǎn)DE分在,BC上,,的積為.(2若AD
,求sin的值.(1析】如圖,在△中
CEsinDCEDCE6所以DCE
25
,·········································································2分因?yàn)?0
所以cos1
26=,··························································分55由
余
弦
定
理
得CECD2528,
DE.········································································7分(2因?yàn)锳CB=90
,所以ACD
DCEcosDCE=,··········在ADC,正弦定理得3即15
ADCD,sinsin所以sinA.·············································································12分26.本小題滿分分)峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天小劃分成兩個(gè)時(shí)間段,把8—22共小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào):—次:共10個(gè)時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對(duì)峰谷電價(jià)的使用情況,從某市一小區(qū)機(jī)抽取了50戶戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以[100,300),,700),[700,度分組的率分布直方圖如下:第13頁共23頁
若將小區(qū)月平均用電量不低于700度住戶稱大戶月均用電量低于度的住戶稱為一般用戶.其中,使用峰谷電價(jià)的戶數(shù)如下表:月平均用電度使用峰谷電價(jià)的戶
9132數(shù)(1估計(jì)所抽取的戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表(2i)“般用”和大戶的數(shù)填入下面2的聯(lián)表:一般用戶
大用戶使用峰谷電價(jià)的用戶不使用峰谷電價(jià)的用戶(ii根據(jù)(i)的列聯(lián)表,能否有
的把握認(rèn)為“用量的高低與使峰谷電有關(guān)?附:K
())(a)(b)
,
第14頁共23頁
【】(1根據(jù)頻率分布直方圖的得到度到300度的頻率為:0.001200200
,·············2分估計(jì)所抽取的50的月均用電量的眾數(shù)為:
500+700
=600度·························3估
計(jì)
所
抽
取
的
50
戶
的
月
均
用
電
量
的
平
均
數(shù)
為:0.00056008000.001210000.0006200640(度··············································································································分(2依題意,列表如下使用峰谷電價(jià)的用戶不使用峰谷電價(jià)的用戶
一般用戶
大用戶··················································································································8分K
的觀測(cè)值
50400k3563
·····························11所以不能有
99%
的把握認(rèn)為用電量的高與使峰谷電”有關(guān).·······················12分27.(小題滿分12分如圖,四棱錐ABCD,面面ABE,邊形ABCD為形,=6,AB=5,BE=3,F(xiàn)為上點(diǎn),且平面(1求證:BE;(2設(shè)在線段DE,且滿足EM,在線段AB上
D
確定一點(diǎn)N,使得//
平面BCE
,并求
的長(zhǎng)
MF(1析】證明:
四邊形ABCD為形BCAB
.
A
B平面與平面ABE平面ABCD
與平面=,
E
且
平面ABCD,
平面ABE.··························································································分又AE面ABE,BC
.···································································································2分第15頁共23頁
面ACE面ACE,BFAE.···································································································分又
BFB
,
平面
BCE
,BF面
BCE
,面
BCE
,···························································································4分平面,AEBE
.···································································································5分(2一中點(diǎn)作MG/AD
交于點(diǎn)ABE中作//交AB于
N
點(diǎn),連
MN
(如圖),·····································································6分EM,EGBN
.//,平面BCE,面BCE
,NG/
平面
BCE
.·························································································7分同理可證,
//
平面
BCE
.MG
,
平面
MGN//
平面BCE,···············································································分又
MN
平面
MGN
,MN/
平面BCE
,························································································分N
點(diǎn)為線段上靠近點(diǎn)的一個(gè)三等分點(diǎn).················································10分,AB,=3MG
AD
,······························································11分MNMG
NG
.···························································分(2法二M點(diǎn)MG/CD交于G接在取點(diǎn)使得MG連MN(如圖),·····························································································分
/CD
EMMD2MG//CD,CD3
AB/CD,BN,//BN,MGBN,················································································7分四邊形
是平行四邊形,第16頁共23頁
11//
,··································································································分又
MN面BCE,平面BCE,MN/
平面BCE
,························································································分N
點(diǎn)為線段上靠近點(diǎn)的一個(gè)三等分點(diǎn),···············································10在△CBG,
AD
=CE63
cos
255
,··················11分BG25
255
,17
.·························································································12分28.本小題滿分分)已知拋物線:1點(diǎn)且與C相.(1求的值;
pyp0)和圓C+12,傾斜角為的直線l過C的21(2)在C的線上,動(dòng)點(diǎn)1
A在上,C在點(diǎn)的切線l交12
軸于點(diǎn)B,設(shè)MAMB求證:點(diǎn)在定直線上,并求該直線的方程.(1【解析題設(shè)直線
l
的方程為y
,···················································1分由已知得:圓C+1+
的心
(
,半徑r2···························分因?yàn)橹本€l與圓相,12所以圓心到直線l:y的離
|1
2.···································3分即
p||22
,解得p或p舍去··············································分所以p.··································································································5(2法一依意設(shè)
(m,
(知物線
1
方程為
所y所y12
x,設(shè)()
,則以
為切點(diǎn)的切線l的斜率為k2
x1
,·················································6分所以切線l的程為y2
x).································································分第17頁共23頁
x12111x12111令,yx2y=,l交y
軸于點(diǎn)坐標(biāo))
,········分所以MAxmy3),·····················································································分MB3),···························································································分∴MBm
,··············································································分∴
OMMNx,3)
設(shè)N點(diǎn)坐標(biāo)為
(,y)則,所以點(diǎn)N在直線上················································································12(2解法二:設(shè)(m,()知拋物線
C
方程為x
y,設(shè)A(x,),以為切點(diǎn)的切線l的方程為(x)②,聯(lián)立①②得:x
]
,···································································6分因?yàn)閗
kx
,所以k=,所以切線l的程為2
x(x).································································7分111令x,切l(wèi)交y軸的點(diǎn)標(biāo)為),·····················································分2所以MAxmy3),·····················································································分MB,··························································································10分∴MNMA=(xm
·················································································11∴
ONMN
,設(shè)點(diǎn)標(biāo)為
(,y,則y,所以點(diǎn)N在直線上················································································1229.本小題滿分分已知函數(shù)
f()ln
x
(R)
.(1求函數(shù)
fx)
的單調(diào)區(qū)間;()
e時(shí),關(guān)于的程
f(
有兩個(gè)不同的實(shí)數(shù)解
,求證:第18頁共23頁
xx212xx212x11
(1析f()的義域?yàn)?0,··································································1分f
ax)]x2x2x2
,···································分①當(dāng)
a時(shí)即a
時(shí),在)上f
在(1
,所以f()的調(diào)遞增區(qū)間是)
上,單調(diào)遞減區(qū)間是(1
;··························3分②當(dāng)1
,即a
時(shí),在0
,所以,函數(shù)f()單遞減區(qū)間是(0,無遞增區(qū).··············································分(2證明:設(shè)
gxf(ax)+
a
=a+lnx············································5分所以
g
a(1)
x
,··············································································分當(dāng)
時(shí),
,數(shù)g)
在區(qū)間當(dāng)x時(shí)
,數(shù)(x)
在區(qū)間
···································分所以
(x)
在x=1
處取得最大值.當(dāng)
e時(shí)方程
f(
有兩個(gè)不同的實(shí)數(shù)解
,2所以函數(shù)
(x)
的兩個(gè)不同的零點(diǎn)
x,1
,一個(gè)零點(diǎn)比1小一個(gè)零點(diǎn)比1大·················8分不妨設(shè)
0x12
,由
(x),g()得xln(),且x=ln()122
,······································分則
=1
11e=ex=a2
xx
,···························································10分所以
xx1ex+1=x1212
,令
+=t1
,(t)=
et
,
eet(ttt2
.第19頁共23頁
2222t+x1212
,
所以
,·································································································11所以函數(shù)
在區(qū)間
上單調(diào)遞增,
(t
,所以
xxe(+x)e1=xa224411
,又因?yàn)?/p>
x+x所xx12
.································································12分(二選考題共分請(qǐng)生第、題中選題答如果做則所第個(gè)目分22.[選修4
:坐標(biāo)系與參數(shù)方程](分)在直角坐標(biāo)系xOy
中,直線
l
1xt的參數(shù)方程為(yat
t
為參數(shù),
aR
.坐標(biāo)原點(diǎn)為極點(diǎn),x
軸正半軸為極軸建立極坐標(biāo)系
的極坐標(biāo)方程為4cos
與曲線C交于P兩,直線l與線相于AB兩點(diǎn)(1求直線
l
的普通方程和曲線的直角坐標(biāo)方程;(2當(dāng)
時(shí),求
的值【解析)直線l參數(shù)方程化為普通方程為
xy
··························2分由
4cos
得
,···································································從而
yx即曲線的角坐標(biāo)方程為
··························(2解法一:由,
所以O(shè)P,·····························································································將直線l的數(shù)方程代入圓的方程
x
2xy
,t
23t
由
,得
2
··································································第20頁共23頁
33設(shè)A、兩對(duì)應(yīng)的參數(shù)為
t,
,則
t
tt43a22
·····································9分解得,a0
或
3
所以,所求的為0或43.·········································································10分解法二:將射線
化為普通方程為
,······················6分由()知,曲線C:
2
的心C
,半徑為2,由點(diǎn)到直線距離公式,得C
到該射線的最短距離為:
33
,所以該射線與曲線C
相交所得的弦長(zhǎng)為
OP2
.·························7分圓心C
到直線
l
的距離為:
233
22
,··············································由
,得
12
,即
3
,····················9分解得,a0
或
3所以,所求的為0或43.·········································································10分選修4
:不等式選講]分已知不等式
x
的解集為M(1求集合;(2設(shè)實(shí)數(shù)a,b,明:b.【解析)法一:當(dāng)
x
12
時(shí),不等式化為:
,
,所以
12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度打字員與酒店管理公司勞動(dòng)合同樣本4篇
- 二零二五年度苗圃病蟲害防治與植物健康管理服務(wù)合同4篇
- 2025年度家電銷售擔(dān)保合作協(xié)議(含轉(zhuǎn)讓)
- 二零二五年度旅游意外傷害免責(zé)協(xié)議4篇
- 二零二五年智能控制鍋爐系統(tǒng)安裝工程合同
- 基于大數(shù)據(jù)的智能零售解決方案2025年度升級(jí)合同2篇
- 2025年度綠色建材櫥柜安裝服務(wù)合同4篇
- 2025年度汽車改裝服務(wù)股份合作協(xié)議4篇
- 二零二五年度山林承包權(quán)合作開發(fā)合同4篇
- 二零二五年度網(wǎng)絡(luò)安全代簽合同委托書4篇
- 綿陽市高中2022級(jí)(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 露天礦山課件
- 經(jīng)濟(jì)效益證明(模板)
- 銀行卡凍結(jié)怎么寫申請(qǐng)書
- 果樹蔬菜病害:第一章 蔬菜害蟲
- 借條借款合同帶擔(dān)保人
- 人工地震動(dòng)生成程序
- 創(chuàng)意綜藝風(fēng)脫口秀活動(dòng)策劃PPT模板
- SSB變槳系統(tǒng)的基礎(chǔ)知識(shí)
- 大五人格量表(revised)--計(jì)分及解釋
- CFA考試(LevelⅠ)歷年真題詳解2015LevelⅠMockExamAfternoonSession
評(píng)論
0/150
提交評(píng)論