高三數(shù)學(xué)橢圓知識點總結(jié)(4篇)_第1頁
高三數(shù)學(xué)橢圓知識點總結(jié)(4篇)_第2頁
高三數(shù)學(xué)橢圓知識點總結(jié)(4篇)_第3頁
高三數(shù)學(xué)橢圓知識點總結(jié)(4篇)_第4頁
高三數(shù)學(xué)橢圓知識點總結(jié)(4篇)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第頁共頁高三數(shù)學(xué)橢圓知識點總結(jié)⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用⑸平面向量:有關(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用⒀復(fù)數(shù):復(fù)數(shù)的概念與運算高三數(shù)學(xué)橢圓知識點總結(jié)(二)正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角圓的標準方程(____-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程____2+y2+D____+Ey+F=0注:D2+E2-4F>0拋物線標準方程y2=2p____y2=-2p2=2py____2=-2py直棱柱側(cè)面積S=ch斜棱柱側(cè)面積S=c'h正棱錐側(cè)面積S=1/2ch'正棱臺側(cè)面積S=1/2(c+c')h'圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pir2圓柱側(cè)面積S=ch=2pih圓錐側(cè)面積S=1/2cl=pirl弧長公式l=ara是圓心角的弧度數(shù)r>0扇形面積公式s=1/2lr錐體體積公式V=1/3SH圓錐體體積公式V=1/3pir2h斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長柱體體積公式V=sh圓柱體V=pr2h乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根與系數(shù)的關(guān)系____1+____2=-b/a____1____2=c/a注:韋達定理判別式b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根高三數(shù)學(xué)橢圓知識點總結(jié)(三)兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB一、課后及時回憶如果等到把課堂內(nèi)容遺忘得差不多時才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識必須及時復(fù)習(xí)。二、定期重復(fù)鞏固即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時間的增長而逐步減小,間隔也可以逐漸拉長。高三數(shù)學(xué)橢圓知識點總結(jié)(四)1.定義:用符號〉,=,〈號連接的式子叫不等式。2.性質(zhì):①不等式的兩邊都加上或減去同一個整式,不等號方向不變。②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。3.分類:①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。②一元一次不等式組:a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。4.考點:①解一元一次不等式(組)②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題③用數(shù)軸表示一元一次不等式(組)的解集高三數(shù)學(xué)期中知識點總結(jié)求函數(shù)定義域常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:①當(dāng)f(x)為整式時,函數(shù)的定義域為R.②當(dāng)f(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。③當(dāng)f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。④當(dāng)f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。⑤如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。⑦對于由實際問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。求函數(shù)值域(1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;(3)、判別式法:(4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域;(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域;(6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域;(7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;(8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;(9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。高三數(shù)學(xué)下學(xué)期知識點總結(jié)2.判定兩個平面平行的方法:(1)根據(jù)定義--證明兩平面沒有公共點;(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;(3)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論