版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Theultrasonicwavepropagationincompositematerial
anditscharacteristicevaluation
JunjieChang,ChangliangZheng,Qing-QingNi
1.Introduction
FRPcompositematerialswereappliedtovariousfields,suchasaircraftandspacestructures,becauseoftheexcellentcharacteristics,e.g.,light-weight,highratioofrelativeintensityandhighratioofrelativerigidity.DespiteFRPhavingsuchoutstandingcharacteristic,cracksinthematrixandfracturesofthefibermakedebondingsuchkindofdamageeasytooccurbetweenthefiberandthematrix,orthemulti-layers.Thesedamagesaredifficulttobedetecteddirectlybyvisualinspectionfromthesamplesurface,causingtroubletoensurethereliabilityandsafetyofthecompositematerialandstructures.Meanwhile,healthmonitoringtechnologiesofmaterialsareindispensable.Amongthem,theultrasonichealthmonitoringtechnologyattractslotsofattentionsinrecentyears.Simulationsbyfiniteelementmethodhavebeenperformedforthedevelopmentofapparatusforultrasonicdamage-detection,suchasultrasonicpictureinspectionandultrasoniclaser,andfortheverificationoftheirsafetyandvalidity.Researchesandcalculationsonthepropagationanalysisoftheultrasonicwaveinfiberstrengtheningcompositematerialshavebeenwellconductedandreported[1–8].
Onthesolidinterface,twokindsofboundariescanbeconsidered.Oneisliquidcontactinwhichthinlubricantisplaced,andonlypowerandpositionmovementperpendiculartotheinterfacearetransmitted.Theotheroneiscompletesolidcombination,whichpowerandpositionmovementbothperpendiculartoandparalleltotheinterfacearetransmitted.
Fiberstrengtheningcompositematerial,theinterfacebetweenthefiberandthematrixcanbeconsideredtobesolidcontact.Inthecaseof,debondingexistingbetweenthematrixandthefiber,fewliteratureswerefound,sincetheconversionsofthetransmittedwavemode,reflectionwavemodeandreflectionpulsephase(waveform)maketheanalysisverycomplicated.Providedthisproblemtobesolved,thequalityofthematerials,tosomeextent,canbeestimatedfromthesoundimpedanceofthereflectorandthetransmissionobject,andtheoptimaldamage-detectionmethodcanbealsoassumedinasimulation.
Inthisresearch,inthesimulationofthetechniquemonitoringthehealthbyanultrasonicwavemethod,theultrasonicwavedistributionpatternwasanalyzedwiththebasictheoryforwavepropagationbyusingthemodelforfiberstrengtheningcompositematerial.Namely,itaimsatobtainingtheamplitudeofthereflectionwaveandtheamplitudeofatransmittedwave,whenthelongitudinalwavehasunitamplitudeincidenceinmodelcompoundmaterial.Inthecaseofanultrasonicwavepropagationinsideamodelmedia,theratesofthereflectivelongitudinal,reflectivetraversewave,transmissionlongitudinalwaveandatransmissiontraversewavegeneratedatageneralincidenceangleintheinterface(afiberandexfoliation)wereanalyzedandreflectivecoefficientandatransmissioncoefficientweregotten,
respectively.Visualizedstudiesseparatingintoalongitudinalwaveandatraversewavewerecarriedout,andthemechanismsofalongitudinalwavedistributionandatraverse-wavedistributionwereelucidatedwhentheultrasonicwavepropagatedinsideacompositematerial.
2.Ultrasonicwaveequations
Considerasinglefibercomposite,i.e.,asinglefiberisembeddedinamatrix.TwodimensionsanalysisisconductedasshowninFig.2.Inthiscase,whenanultrasonicwavepropagatesinthissolidmedia,fromHooke’slaw,thestress–strainrelationshipfortwo-dimensionalplanestraininanisotropicmediaiswrittenasfollows[2]:
(1)
(2)
(3)
(4)
WherekandlareLame′constants,andtheTsuperscriptdenotesthetransposition.
Theultrasonicwaveequationsofmotionfortwodimensionalplanestraininanisotropicmediaareasfollows:
(5)
Where,thefirsttermontheleft-handsideofEq.(5)correspondstoalongitudinalwave,andthesecondtermcorrespondstoatransversewave.
isdensity.Ifthelongitudinalwavevelocity
andtransversewavevelocity
areintroducedtheultrasonicwaveequationsofmotionfortwo-dimensionalplanestraincanberewrittenby
(6)
Inthecaseofaplaneadvancingwave,thefollowingformulaisusedtocalculatefortheoscillatingenergygeneratedbytheultrasonicwaveperunittime:
(7)
3.Resultsofanalysisandsimulation
3.1.Transmissionenergyindifferentinterfaceshapes
Whenanincidentverticalwaveisobliquelyirradiated,fourwavesasshowninFig.3,i.e.,reflectedlongitudinalwave,reflectedtransversewave,transmittedlongitudinalwaveandtransmittedtransversewave,wouldappearontheinterface.Inotherwords,theshapeoftheinterfacebetweenepoxyandglassmayinfluencethepropagationoftheultrasonicwave.Forthisreason,themodelwithdifferentinterfaceshapesasshowninFig.1wasusedtoinvestigatetheinfluenceofinterfaceshapeonwavepropagationbehavior.Thevolumefractionproportionofbothmaterialsis1:1,despiteofthedifferentinterfaceshapesofthethreemodels.Thatistosay,theglass-volume-percentageofallthemodelsis50%.ThepropertiesofeachmediumusedintheanalysisareshowninTable1.Asaboundaryconditionofthemodel,absorptionisconsideredontherightandleftedge,whileitissymmetrical(theroller)ontheupanddowndirection.TheanalyticconditionandtheinputparameterswereshowninTable1.
Fig.2showsthetransmissionenergyoftheultrasonicwavepropagationforthesefourmodelsshowninFig.1.
Fig.1.Fourdifferentinterfaceshapesbetweenepoxyandglass.
Herethetransmissionenergywasdefinedbytheaverageenergyperunitarea,lJ/mm2,atthereceiveredge.Asseen,inModel1,theincidentultrasonicwaveisperpendiculartotheplaneinterface,andtransmittedwaveoccursalongwholeplane,sothatthetransmissionenergyisfarlargerthanthatintheothermodels.Thefull-reflectiontakesplaceinpartofinterfaceinbothModel2andModel3whentheincidenceangleislargerthanthecriticalanglebecausetheultrasonicwaveradiatesobliquelyonaconvexorconcaveinterface.Aboutonethirdoftheincidentwaveexperiencesfull-reflectioninModel2andModel3.However,thetransmissionenergyofModel3islargerthanthatofModel2.AsecondpeakappearsinthetransmissioncurveofModel3.Peak1isareflectedwavethatpropagatesasasecondarywavesourceneartheup-down-wardinterface(intheglassregion),whilepeak2isatransmittedwaveinthecentralpartoftheglassregion.Thereasonmightbethatneartheinterface,arefractiveindexdistributionoccurs,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectionwaves.
Thefull-reflectiontakesplaceininterfaceofModel4(incidenceangleis45_).Allprimaryincidentwaveswerereflected,andtheverysmalltransmissionenergythatshowsasfigureisbecausethedispersionwaveandthereflectedwavepenetratedthepartassecondarywavesourcefromtheverticalneighborhood.
3.2.Influenceofdifferentfiberconditions
Refractiveindexdistributionoccursnearthesecondphaseboundaryduetothesecondphasecompounding,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectioninthecompositematerialsstrengthenedbyfibers.Inthenext,thescatteringoftheultrasonicwaveshowninFig.1willbetakenintoconsideration.Thescattersoccurduetofibersembeddedincompositematerials.Theincidentwave
,propagatinginmatrixregion,isasinusoidalwave.Whentheincidentwavereachesthefiber,someistransmittedintothefiber,andtheotherisreflectedonthefiber/matrixinterface,andbecomesasecondarywavesource.Accordingtotheoverlappingprincipleofwavefunctions,thewholewavefunction
canbeexpressedasasumoftheincidentwave
andthescatteredwave
.
(8)
Wherethescatteredwave
includesallthewavesscatteringcomponentsgeneratedduetotheinterfacefromtheknownwave
.
ThemodelfigureofthecompositematerialsfortheinvestigationofthescatterswasdesignedaswhatshowninFig.3,wherethreefiberswithdifferentshapeswereembeddedinthematrix.Thesizeofthemodelwas
.Theboard-shapedglassfiberwiththickness
wasembeddedinthecenterofthematrixofepoxyinModel1,andwasobliquelyembeddedinModel2.Acolumnshapedglassfiberwithadiameter
wasembeddedinthecenterofmatrixinModel3.Theabovethreemodelshadacommonfiberpercentageof20.TheanalyticconditionandtheinputparameterswereshowninTable1.
ForthemodelsinFig.3,whentheincidentwaveontheleft-handsideoftheglassregionarrivedatthefirstinterfacebetweentheepoxyandglass,thetransmittedwaveandthereflectedwavearose.Thenthereflectedwavepropagatedtotheincidenceside,whilethetransmittedwavepropagatedtothereceiversideandarrivedatthesecondinterfaceoftheglassandepoxythroughtheglassregion.
Thesecondtransmittedwaveandthesecondreflectedwavearoseatthesecondinterface,andamultiplexreflectionoccurredintheglassregion.Fortheboard-shapedfiber(planefiber)andthecolumn-shapedfiber(cylindricalfiber),Fig.4showsthecomparisonsoftheanalyticresultsinthecasesofModel1(fiberthickness
),Model2(fiberthickness
,
_)andModel3(fiberdiameter
)inFig.3,withanequivalentfibervolumefractionbutwithadifferentshape.Asseenfromthefigure,thetransmissionenergyoftheModel1isfarlargerthanthatModel2andModel3.
FromFig.4,whichembeddedtheboard-shapedfiber,twoenergypeakswereclearlyobservedbytransmissionenergycurveinModel1andModel3.InModel1,thestrongpeakscorrespondtothefirsttransmittedwave,andfourweakpeaksareascribedtothefirstreflectedwavebytheglassfiber.InModel3,thefirstenergypeakresultedfromatransmittedwavethroughtheglassfiberregion,whilethesecondenergypeakwasduetothewavepropagatingthroughtheupperandlowerregionsoftheepoxy.Consequently,itcanbeunderstoodwhythetransmissionenergyfortheboard-shapedfiberislargerthanthatofthecolumn-shapedfiber,whenthefibervolumefractionwasthesame.
4.Behaviorofwavepropagationincompositematerial
4.1.Analysismodelandultrasonicpropagationsimulation
Mostoffiberreinforcedcompositesmaterialmaybeconsideredasaninhomogeneousbodymicroscopically,andahomogeneousonemacroscopically.Forthecompositeswithfibers,thefiberarraymodelwillbeusefultotakeintoaccountofthereflectionand/ortransmissionofmultiinterfaces.Inordertoevaluatethemacroscopiccharacteristicofsuchacompositematerial,atwo-dimensiondomainwithdifferentfiberarrayswasproposedasshowninFig.5.Inthismodel,circularglassfiberswereembeddedwithhexagonalintheinterioroftheepoxymatrix.Thesizeofthemodelwas
;thefiberdiameterisd.Anincidentwaveof100MHzwasused.Themodelforanalysiswasdividedinto
elements(1,72,80,000totalelements).Inordertoaccountforthelossofloadcarryingcapacityofthefailedelements,thestiffnessofsuchelementsarereducedbytheuseofnextmethod.
Fig.6showstheseriesofstressdispersionpatternsduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5(fiberdiameter
,withoutattenuation).Whentheultrasonicwavewaspropagatedoutreachedthefiber,thereflectedwave,thetransmittedwave,anddispersionwavewereappearedclearly(Fig.6(a)).Ifawavemotionarrivedattheinterfacebetweenthefiberandthematrix,partofthewavewasreflectedasasecondarysourcewave,andatthesametimeadispersionwavewasgeneratedaroundthefiber.Theotherpartofthewavewastransmittedfiberandpropagatedtoreceiverside.Themultiplexreflectiontookplaceinteriorofthefiber(Fig.6(b)).Moreover,thewavewhichspreadsthecircumferenceofthefiberinterfereseachotheramongfibers,thepropagationsituationoftheultrasonicwavebecomefurthercomplicatesthanthatofbefore(Fig.6(c)–(e)).Fromtheseresults,theinfluenceoffiberonpropagationanddispersionofanultrasonicwaveinacompositematerialcouldbevisualizedandunderstood.
4.2.Influenceoffiber-volume-percentageandwithattenuationinmatrix
Whendiameteroffiberischangedby
andattenuationwith/withoutattenuationinmatrix,whichinvestigateshowthepropagationactionoftheultrasonicwaveinadistributedcompositematerialmodel.Figs.7and8haveshownthetimehistorycurveofreflectionenergywith/withoutattenuationinepoxymatrix,thatduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5,respectively.Fig.9hasshownthetimehistorycurveoftransmittedenergywithattenuationinepoxymatrix.Fig.10hasshownthatcomparisonoftransmissionenergyratiowithand/orwithoutattenuationduringtheultrasonicwavepropagationformodeloffiber-reinforcedcompositesinFig.5,respectively.Afigureincasewithoutattenuationinepoxymatrixisomitted.
Ifthewith/withoutattenuationinepoxymatrixiscompared,thepeakvalueofreflectedenergycurve(inthecaseoffiberdiameter
)withattenuationinepoxymatrix(attenuationcoefficient120dB/m/MHz)issmallerabout30%thanthatwithoutattenuationinepoxymatrix.Moreover,althoughthereflectedenergycurveinthefigureisdisplayedonlytotwopeaks,the2ndpeakvalueislargerthanthe1stpeakvalue.The1stpeakvalueistheenergyofthereflectedwavefromafiber3,andthe2ndpeakvalueistheenergyofthereflectedwavefromfibers1and6(Fig.5).Disorderaroseonthesubsequentreflectiveenergycurve,andregularitywaslost.Moreover,itfollowsontheincreaseinfibersdiameter(fibercontent)thattheenergyofareflectedwaveincreasesirrespectiveofwith/withoutattenuationinepoxymatrix.
Inthecasewithattenuationinepoxymatrix,atforthetransmittedenergyhistorycurve,andthepeakvalue(inthecaseoffiberdiameterd=2k)inthetransmittedenergycurveisabouthalfofthatwithoutattenuation,andthegradeofinfluencebyattenuationinepoxymatrixshowup.Itbecomesclearerfromthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)游戲公司前臺(tái)接待總結(jié)
- 2025年全球及中國神經(jīng)外科分流器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球草坪護(hù)理CRM軟件行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國導(dǎo)向銷行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025年全球及中國古董搬運(yùn)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球雙膜儲(chǔ)氣罐行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球環(huán)保EPDM顆粒行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球壞死性筋膜炎藥品行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球車輛后備箱釋放電纜行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球光伏舟托行業(yè)調(diào)研及趨勢分析報(bào)告
- 第十一章《功和機(jī)械能》達(dá)標(biāo)測試卷(含答案)2024-2025學(xué)年度人教版物理八年級(jí)下冊
- 2025年銷售部年度工作計(jì)劃
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- ESG表現(xiàn)對企業(yè)財(cái)務(wù)績效的影響研究
- DB3713T 340-2024 實(shí)景三維數(shù)據(jù)接口及服務(wù)發(fā)布技術(shù)規(guī)范
- 八年級(jí)生物開學(xué)摸底考(長沙專用)(考試版)
- 車間空調(diào)崗位送風(fēng)方案
- 使用錯(cuò)誤評估報(bào)告(可用性工程)模版
- 初一年級(jí)班主任上學(xué)期工作總結(jié)
- 2023-2024年同等學(xué)力經(jīng)濟(jì)學(xué)綜合真題及參考答案
- 農(nóng)村集體土地使用權(quán)轉(zhuǎn)讓協(xié)議
評論
0/150
提交評論