




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
爨兒/如禁出孝
本科畢業(yè)設(shè)計外文文獻及譯文文獻、資料題目:DesigningAgainstFireOfBuilding文獻、資料來源:國道數(shù)據(jù)庫文獻、資料發(fā)表(出版)日期:2008.3.25院(部):土木工程學(xué)院專業(yè):土木工程班級:土木輔修091姓名:xxxx外文文獻:DesigningAgainstFireOfBulidingxxxABSTRACT:Thispaperconsidersthedesignofbuildingsforfiresafety.Itisfoundthatfireandtheassoci-atedeffectsonbuildingsissignificantlydifferenttootherformsofloadingsuchasgravityliveloads,windandearthquakesandtheirrespectiveeffectsonthebuildingstructure.Fireeventsarederivedfromthehumanactivitieswithinbuildingsorfromthemalfunctionofmechanicalandelectricalequipmentprovidedwithinbuildingstoachieveaserviceableenvironment.Itisthereforepossibletodirectlyinfluencetherateoffirestartswithinbuildingsbychanginghumanbehaviour,improvedmaintenanceandimproveddesignofmechanicalandelectricalsystems.Furthermore,shouldafiredevelops,itispossibletodirectlyinfluencetheresultingfireseveritybytheincorporationoffiresafetysystemssuchassprinklersandtoprovidemeasureswithinthebuildingtoenablesaferegressfromthebuilding.Theabilitytoinfluencetherateoffirestartsandtheresultingfireseverityisuniquetotheconsiderationoffirewithinbuildingssinceotherloadssuchaswindandearthquakesaredirectlyafunctionofnature.Thepossibleapproachesfordesigningabuildingforfiresafetyarepresentedusinganexampleofamulti-storeybuildingconstructedoverarailwayline.Thedesignofboththetransferstructuresupportingthebuildingovertherailwayandthelevelsabovethetransferstructureareconsideredinthecontextofcurrentregulatoryrequirements.Theprinciplesandassumptionsassoci-atedwithvariousapproachesarediscussed.INTRODUCTIONOtherpaperspresentedinthisseriesconsiderthedesignofbuildingsforgravityloads,windandearthquakes.Thedesignofbuildingsagainstsuchloadeffectsistoalargeextentcoveredbyengineeringbasedstandardsreferencedbythebuildingregulations.Thisisnotthecase,tonearlythesameextent,inthecaseoffire.Rather,itisbuildingregulationssuchastheBuildingCodeofAustralia(BCA)thatdirectlyspecifymostoftherequirementsforfiresafetyofbuildingswithreferencebeingmadetoStandardssuchasAS3600orAS4100formethodsfordeterminingthefireresistanceofstructuralelements.Thepurposeofthispaperistoconsiderthedesignofbuildingsforfiresafetyfromanengineeringperspective(asiscurrentlydoneforotherloadssuchaswindorearthquakes),whilstatthesametime,puttingsuchapproachesinthecontextofthecurrentregulatoryrequirements.Attheoutset,itneedstobenotedthatdesigningabuildingforfiresafetyisfarmorethansimplyconsideringthebuildingstructureandwhetherithassufficientstructuraladequacy.Thisisbecausefirescanhaveadirectinfluenceonoccupantsviasmokeandheatandcangrowinsizeandseverityunlikeothereffectsimposedonthebuilding.Notwithstandingthesecomments,thefocusofthispaperwillbelargelyondesignissuesassociatedwiththebuildingstructure.Twosituationsassociatedwithabuildingareusedforthepurposeofdiscussion.Themulti-storeyofficebuildingshowninFigure1issupportedbyatransferstructurethatspansoverasetofrailwaytracks.Itisassumedthatawiderangeofrailtrafficutilisesthesetracksincludingfreightanddiesellocomotives.Thefirstsituationtobeconsideredfromafiresafetyperspectiveisthetransferstructure.ThisistermedSituation1andthekeyquestionsare:whatleveloffireresistanceisrequiredforthistransferstructureandhowcanthisbedetermined?Thissituationhasbeenchosensinceitclearlyfallsoutsidethenormalregulatoryscopeofmostbuildingregulations.Anengineeringsolution,ratherthanaprescriptiveoneisrequired.Thesecondfiresituation(termedSituation2)correspondstoafirewithintheofficelevelsofthebuildingandiscoveredbybuildingregulations.Thissituationischosenbecauseitwillenableadiscussionofengineeringapproachesandhowtheseinterfacewiththebuildingregulationssincebothengineeringandprescriptivesolutionsarepossible.
Figure1AMulti-storeyofficebuildingUNIQUENESSOFFIREIntroductionWindandearthquakescanbeconsideredtobe“natural”phenomenaoverwhichdesignershavenocontrolexceptperhapstochoosethelocationofbuildingsmorecarefullyonthebasisofhistoricalrecordsandtodesignbuildingtoresistsufficientlyhighloadsoraccelerationsfortheparticularlocation.Deadandliveloadsinbuildingsaretheresultofgravity.Alloftheseloadsarevariableanditispossible(althoughgenerallyunlikely)thattheloadsmayexceedtheresistanceofthecriticalstructuralmembersresultinginstructuralfailure.Thenatureandinfluenceoffiresinbuildingsarequitedifferenttothoseassociatedwithother“l(fā)oads”towhichabuildingmaybesubjectedto.Theessentialdifferencesaredescribedinthefollowingsections.OriginofFireInmostsituations(ignoringbushfires),fireoriginatesfromhumanactivitieswithinthebuildingorthemalfunctionofequipmentplacedwithinthebuildingtoprovideaserviceableenvironment.Itfollowsthereforethatitispossibletoinfluencetherateoffirestartsbyinfluencinghumanbehaviour,limitingandmonitoringhumanbehaviourandimprovingthedesignofequipmentanditsmaintenance.Thisisnotthecasefortheusualloadsappliedtoabuilding.AbilitytoInfluenceSincewindandearthquakearedirectlyfunctionsofnature,itisnotpossibletoinfluencesucheventstoanyextent.Onehastoanticipatethemanddesignaccordingly.Itmaybepossibletoinfluencethelevelofliveloadinabuildingbyconductingauditsandplacingrestrictionsoncontents.However,inthecaseofafirestart,therearemanyfactorsthatcanbebroughttobeartoinfluencetheultimatesizeofthefireanditseffectwithinthebuilding.Itisknownthatoccupantswithinabuildingwilloftendetectafireanddealwithitbeforeitreachesasig-nificantsize.Itisestimatedthatlessthanonefireinfive(Favre,1996)resultsinacalltothefirebrigadeandforfiresreportedtothefirebrigade,themajoritywillbelimitedtotheroomoffireorigin.Inoc-cupiedspaces,olfactorycues(smell)providepowerfulevidenceofthepresenceofevenasmallfire.Theadditionofafunctionalsmokedetectionsystemwillfurtherimprovethelikelihoodofdetectionandofactionbeingtakenbytheoccupants.Firefightingequipment,suchasextinguishersandhosereels,isgenerallyprovidedwithinbuildingsfortheuseofoccupantsandmanyorganisationsprovidetrainingforstaffinrespectoftheuseofsuchequipment.Thegrowthofafirecanalsobelimitedbyautomaticextinguishingsystemssuchassprinklers,whichcanbedesignedtohavehighlevelsofeffectiveness.Firescanalsobelimitedbythefirebrigadedependingonthesizeandlocationofthefireatthetimeofarrival.EffectsofFireThestructuralelementsinthevicinityofthefirewillexperiencetheeffectsofheat.Thetemperatureswithinthestructuralelementswillincreasewithtimeofexposuretothefire,therateoftemperaturerisebeingdictatedbythethermalresistanceofthestructuralelementandtheseverityofthefire.Theincreaseintemperatureswithinamemberwillresultinboththermalexpansionand,eventually,areductioninthestructuralresistanceofthemember.Differentialthermalexpansionwillleadtobowingofamember.Significantaxialexpansionwillbeaccommodatedinsteelmembersbyeitheroverallorlocalbucklingoryieldingoflocal-isedregions.Theseeffectswillbedetrimentalforcolumnsbutforbeamsformingpartofafloorsystemmayassistinthedevelopmentofotherloadresistingmechanisms(seeSection4.3.5).Withtheexceptionofthedevelopmentofforcesduetorestraintofthermalexpansion,firedoesnotimposeloadsonthestructurebutratherreducesstiffnessandstrength.Sucheffectsarenotinstantaneousbutareafunctionoftimeandthisisdifferenttotheeffectsofloadssuchasearthquakeandwindthataremoreorlessinstantaneous.
Heatingeffectsassociatedwithafirewillnotbesignificantortherateoflossofcapacitywillbeslowedif:thefireisextinguished(e.g.aneffectivesprinklersystem)thefireisofinsufficientseverity-insufficientfuel,and/orthestructuralelementshavesufficientthermalmassand/orinsulationtoslowtheriseininternaltemperaturethicknessofprotectionFiguit2ConcreteandSteelElementsthicknessofprotectionFireprotectionmeasuressuchasprovidingsufficientaxisdistanceanddimensionsforconcreteelements,andsufficientinsulationthicknessforsteelelementsareexamplesof(c).TheseareillustratedinFigure2.Thetwosituationsdescribedintheintroductionarenowconsidered.FIREWITHINBUILDINGSFireSafetyConsiderationsTheimplicationsoffirewithintheoccupiedpartsoftheofficebuilding(Figure1)(Situation2)arenowconsidered.Firestatisticsforofficebuildingsshowthataboutonefatalityisexpectedinanofficebuildingforevery1000firesreportedtothefirebrigade.Thisisanorderofmagnitudelessthanthefatalityrateassociatedwithapartmentbuildings.Morethantwothirdsoffiresoccurduringoccupiedhoursandthisisduetothegreaterhumanactivityandthegreateruseofserviceswithinthebuilding.Itistwiceaslikelythatafirethatcommencesoutofnormalworkinghourswillextendbeyondtheenclosureoffireorigin.Arelativelysmallfirecangeneratelargequantitiesofsmokewithintheflooroffireorigin.Ifthefloorisofopen-planconstructionwithfewpartitions,thepresenceofafireduringnormaloccupiedhoursisalmostcertaintobedetectedthroughtheobservationofsmokeonthefloor.Thepresenceoffullheightpartitionsacrossthefloorwillslowthespreadofsmokeandpossiblyalsothespeedatwhichtheoccupantsdetectthefire.Anymeasuresaimedatimprovinghousekeeping,fireawarenessandfireresponsewillbebeneficialinreducingthelikelihoodofmajorfiresduringoccupiedhours.Formulti-storeybuildings,smokedetectionsystemsandalarmsareoftenprovidedtogive“automatic”detectionandwarningtotheoccupants.Analarmsignalisalsotransmittedtothefirebrigade.Shouldthefirenotbeabletobecontrolledbytheoccupantsonthefirefloor,theywillneedtoleavetheflooroffireoriginviathestairs.Stairenclosuresmaybedesignedtobefire-resistantbutthismaynotbesufficienttokeepthesmokeoutofthestairs.Manybuildingsincorporatestairpressurisationsystemswherebypositiveairflowisintroducedintothestairsupondetectionofsmokewithinthebuilding.However,thisincreasestheforcesrequiredtoopenthestairdoorsandmakesitincreasinglydifficulttoaccessthestairs.Itisquitelikelythatexcessivedooropeningforceswillexist(Fazioetal,2006)Fromafireperspective,itiscommontoconsiderthatabuildingconsistsofenclosuresformedbythepresenceofwallsandfloors.Anenclosurethathassufficientlyfire-resistantboundaries(i.e.wallsandfloors)isconsideredtoconstituteafirecompartmentandtobecapableoflimitingthespreadoffiretoanadjacentcompartment.However,theabilityofsuchboundariestorestrictthespreadoffirecanbeseverelylimitedbytheneedtoprovidenaturallighting(windows)andaccessopeningsbetweentheadjacentcompartments(doorsandstairs).Firespreadviatheexternalopenings(windows)isadistinctpossibilitygivenafullydevelopedfire.Limitingthewindowsizesandgeometrycanreducebutnoteliminatethepossibilityofverticalfirespread.Byfarthemosteffectivemeasureinlimitingfirespread,otherthanthepresenceofoccupants,isaneffectivesprinklersystemthatdeliverswatertoagrowingfirerapidlyreducingtheheatbeinggeneratedandvirtuallyextinguishingit.EstimatingFireSeverityIntheabsenceofmeasurestoextinguishdevelopingfires,orshouldsuchsystemsfail;severefirescandevelopwithinbuildings.Infireengineeringliterature,theterm“fireload”referstothequantityofcombustibleswithinanenclosureandnottheloads(forces)appliedtothestructureduringafire.Similarly,fireloaddensityreferstothequantityoffuelperunitarea.ItisnormallyexpressedintermsofMJ/m2orkg/m2ofwoodequivalent.Surveysofcombustiblesforvariousoccupancies(i.eoffices,retail,hospitals,warehouses,etc)havebeenundertakenandagoodsummaryoftheavailabledataisgiveninFCRC(1999).Aswouldbeexpected,thefireloaddensityishighlyvariable.PublicationssuchastheInternationalFireEngineeringGuidelines(2005)givefireloaddataintermsofthemeanand80thpercentile.ThelatterleveloffireloaddensityissometimestakenasthecharacteristicfireloaddensityandissometimestakenasbeingdistributedaccordingtoaGumbeldistribution(Schleichetal,1999).Therateatwhichheatisreleasedwithinanenclosureistermedtheheatreleaserate(HRR)andnormallyexpressedinmegawatts(MW).Theapplicationofsufficientheattoacombustiblematerialresultsinthegenerationofgasessomeofwhicharecombustible.Thisprocessiscalledpyrolisation.Uponcomingintocontactwithsufficientoxygenthesegasesignitegeneratingheat.Therateofburning(andthereforeofheatgeneration)isthereforedependentontheflowofairtothegasesgeneratedbythepyrolisingfuel.Thisflowisinfluencedbytheshapeoftheenclosure(aspectratio),andthepositionandsizeofanypotentialopenings.ItisfoundfromexperimentswithsingleopeningsinapproximatelycubicenclosuresthattherateofburningisdirectlyproportionaltoAhwhereAistheareaoftheopeningandhistheopeningheight.Itisknownthatfordeepenclosureswithsingleopeningsthatburningwilloccurinitiallyclosesttotheopeningmovingbackintotheenclosureoncethefuelclosesttotheopeningisconsumed(Thomasetal,2005).Significanttemperaturevariationsthroughoutsuchenclosurescanbeexpected.Theuseoftheword‘opening’inrelationtorealbuildingenclosuresreferstoanyopeningspresentaroundthewallsincludingdoorsthatareleftopenandanywindowscontainingnonfire-resistantglass.Itispresumedthatsuchglassbreaksintheeventofdevelopmentofasignificantfire.Ifthewindowscouldbepreventedfrombreakingandothersourcesofairtotheenclosurelimited,thenthefirewouldbepreventedfrombecomingaseverefire.Variousmethodshavebeendevelopedfordeterminingthepotentialseverityofafirewithinanenclosure.ThesearedescribedinSFPE(2004).Thepredictionsofthesemethodsarevariableandaremostlybasedonestimatingarepresentativeheatreleaserate(HRR)andtheproportionoftotalfuelglikelytobeconsumedduringtheprimaryburningstage(Figure4).Furtherstudiesofenclosurefiresarerequiredtoassistwiththedevelopmentofimprovedmodels,asthebehaviourisverycomplex.RoleoftheBuildingStructureIfthedesignobjectivesaretoprovideanadequatelevelofsafetyfortheoccupantsandprotectionofadjacentpropertiesfromdamage,thenthestructuraladequacyofthebuildinginfireneedonlybesufficienttoallowtheoccupantstoexitthebuildingandforthebuildingtoultimatelydeforminawaythatdoesnotleadtodamageorfirespreadtoabuildinglocatedonanadjacentsite.TheseobjectivesarethoseassociatedwithmostbuildingregulationsincludingtheBuildingCodeofAustralia(BCA).Therecouldbeotherobjectivesincludingprotectionofthebuildingagainstsignificantdamage.Inconsideringthesevariousobjectives,thefollowingshouldbetakenintoaccountwhenconsideringthefireresistanceofthebuildingstructure.Non-StructuralConsequencesSincefirecanproducesmokeandflame,itisimportanttoaskwhethertheseoutcomeswillthreatenlifesafetywithinotherpartsofthebuildingbeforethebuildingiscompromisedbyalossofstructuraladequacy?Issearchandrescuebythefirebrigadenotfeasiblegiventhelikelyextentofsmoke?Willthelossofuseofthebuildingduetoaseverefireresultinmajorpropertyandincomeloss?Iftheanswertothesequestionsisintheaffirmative,thenitmaybenecessarytominimisetheoccurrenceofasignificantfireratherthansimplyassumingthatthebuildingstructureneedstobedesignedforhighlevelsoffireresistance.Alow-riseshoppingcentrewithlevelsinterconnectedbylargevoidsisanexampleofsuchasituation.OtherFireSafetySystemsThepresenceofothersystems(e.g.sprinklers)withinthebuildingtominimisetheoccurrenceofaseriousfirecangreatlyreducetheneedforthestructuralelementstohavehighlevelsoffireresistance.Inthisregard,theuncertaintiesofallfire-safetysystemsneedtobeconsidered.Irrespectiveofwhetherthefiresafetysystemisthesprinklersystem,stairpressurisation,compartmentationorthesystemgivingthestructureafire-resistancelevel(e.g.concretecover),thereisanuncertaintyofperformance.Uncertaintydataisavailableforsprinklersystems(becauseitisrelativelyeasytocollect)butisnotreadilyavailablefortheotherfiresafetysystems.Thissometimesresultsinthedesignersandbuildingregulatorsconsideringthatonlysprinklersystemsaresubjecttouncertainty.Inreality,itwouldappearthatsprinklerssystemshaveahighlevelofperformanceandcanbedesignedtohaveveryhighlevelsofreliability.HeightofBuildingIttakeslongerforatallbuildingtobeevacuatedthanashortbuildingandthereforethestructureofatallbuildingmayneedtohaveahigherleveloffireresistance.Theimplicationsofcollapseoftallbuildingsonadjacentpropertiesarealsogreaterthanforbuildingsofonlyseveralstoreys.LimitedExtentofBurningIfthelikelyextentofburningissmallincomparisonwiththeplanareaofthebuilding,thenthefirecannothaveasignificantimpactontheoverallstabilityofthebuildingstructure.Examplesofsituationswherethisisthecaseareopen-deckcarparksandverylargeareabuildingsuchasshoppingcomplexeswherethefire-effectedpartislikelytobesmallinrelationtoareaofthebuildingfloorplan.BehaviourofFloorElementsTheeffectofrealfiresoncompositeandconcretefloorscontinuestobeasubjectofmuchresearch.ExperimentaltestingatCardingtondemonstratedthatwhenpartsofacompositeflooraresubjecttoheating,largedisplacementbehaviourcandevelopthatgreatlyassiststheloadcarryingcapacityofthefloorbeyondthatwhichwouldpredictedbyconsideringonlythebehaviourofthebeamsandslabsinisolation.Thesesituationshavebeenanalysedbybothyieldlinemethodsthattakeintoaccounttheeffectsofmembraneforces(Bailey,2004)andfiniteelementtechniques.Inessence,themethodsillustratethatitisnotnecessarytoinsulateallstructuralsteelelementsinacompositefloortoachievehighlevelsoffireresistance.Thisworkalsodemonstratedthatexposureofacompositefloorhavingunprotectedsteelbeams,toalocalisedfire,willnotresultinfailureofthefloor.Asimilarrealfiretestonamultistoryreinforcedconcretebuildingdemonstratedthattherealstructuralbehaviourinfirewassignificantlydifferenttothatexpectedusingsmalldisplacementtheoryasfornormaltemperaturedesign(Bailey,2002)withtheperformancebeingsuperiorthanthatpredictedbyconsideringisolatedmemberbehaviour.3.4PrescriptiveApproachtoDesignThebuildingregulationsofmostcountriesprovideprescriptiverequirementsforthedesignofbuildingsforfire.Theserequirementsaregenerallynotsubjecttointerpretationandcompliancewiththemmakesforsimplerdesignapproval-althoughnotnecessarilythemostcost-effectivedesigns.Theseprovisionsareoftentermeddeemed-to-satisfy(DTS)provisions.Allaspectsofdesigningbuildingsforfiresafetyarecovered-theprovisionofemergencyexits,spacingsbetweenbuildings,occupantfirefightingmeasures,detectionandalarms,measuresforautomaticfiresuppression,airandsmokehandlingrequirementsandlast,butnotleast,requirementsforcompartmentationandfireresistancelevelsforstructuralmembers.However,thereislittleevidencethattherequirementshavebeendevelopedfromasystematicevaluationoffiresafety.Ratheritwouldappearthatmanyoftherequirementshavebeenaddedonetoanothertodealwithanotherfireincidentortoincorporateanewformoftechnology.Theredoesnotappeartohavebeenanyrealattempttodeterminewhichprovisionhavethemostsignificantinfluenceonfiresafetyandwhethersomeoftheformerprovisionscouldbemodified.TheFRLrequirementsspecifiedintheDTSprovisionsaretraditionallyconsideredtoresultinmemberresistancesthatwillonlyrarelyexperiencefailureintheeventofafire.Thisiswhyitisacceptabletousetheabovearbitrarypointintimeloadcombinationforassessingmembersinfire.Therehavebeenattemptstoevaluatethevariousdeemed-to-satisfyprovisions(particularlythefire-resistancerequirements)fromafire-engineeringperspectivetakingintoaccountthepossiblevariationsinenclosuregeometry,openingsizesandfireload(seeFCRC,1999).Oneoftheoutcomesofthisevaluationwastherecognitionthatdeemed-to-satisfyprovisionsnecessarilycoverthebroadrangeofbuildingsandthusmust,onaverage,bequiteonerousbecauseofthemagnitudeoftheabovevariations.ItshouldbenotedthattheDTSprovisionsassumethatcompartmentationworksandthatfireislimitedtoasinglecompartment.Thismeansthatfireisnormallyonlyconsideredtoexistatonelevel.Thusfloorsareassumedtobeheatedfrombelowandcolumnsonlyoveronestoreyheight.Performance-BasedDesignAnapproachthatofferssubstantialbenefitsforindividualbuildingsisthemovetowardsperformance-basedregulations.ThisispermittedbyregulationssuchastheBCAwhichstatethatadesignermustdemonstratethattheparticularbuildingwillachievetherelevantperformancerequirements.Theprescriptiveprovisions(i.e.theDTSprovisions)arepresumedtoachievetheserequirements.ItisnecessarytoshowthatanybuildingthatdoesnotconformtotheDTSprovisionswillachievetheperformancerequirements.Butwhataretheperformancerequirements?Mostoftenthespecifiedperformanceissimplyasetofperformancestatements(suchaswiththeBuildingCodeofAustralia)withnoquantitativelevelgiven.Therefore,althoughthesestatementsremindthedesignerofthekeyelementsofdesign,theydonot,inthemselves,provideanymeasureagainstwhichtodeterminewhetherthedesignisadequatelysafe.Possibleacceptancecriteriaarenowconsidered.3.5.1AcceptanceCriteriaSomeguidanceastothebasisforacceptabledesignsisgiveninregulationssuchastheBCA.Tparethelevelsofsafety(withrespecttoachievingeachofthedesignobjectives)oftheproposedalternativesolutionwiththoseasso-ciatedwithacorrespondingDTSsolutionforthebuilding.Thiscomparisonmaybedoneoneitheraqualitativeorqualitativeriskbasisorperhapsacombination.Inthiscase,thebasisforcomparisonisanacceptableDTSsolution.Suchanapproachrequiresa“holistic”approachtosafetywherebyallaspectsrelevanttosafety,includingthestructure,areconsidered.Thisis,byfar,themostcommonbasisforacceptance.undertakeaprobabilisticriskassessmentandshowthattheriskassociatedwiththeproposeddesignislessthanthatassociatedwithcommonsocietalactivitiessuchasusingpublictransport.Undertakingafullprobabilisticriskassessmentcanbeverydifficultforallbutthesimplestsituations.Assumingthatsuchanassessmentisundertakenitwillbenecessaryforthestakeholderstoacceptthenominatedlevelofacceptablerisk.Again,thisrequiresa“holistic”approachtofiresafety.adesignispresentedwhereitisdemonstratedthatallreasonablemeasureshavebeenadoptedtomanagetherisksandthatanypossiblemeasuresthathavenotbeenadoptedwillhavenegligibleeffectontheriskofnotachievingthedesignobjectives.asfarasthebuildingstructureisconcerned,benchmarktheacceptableprobabilityoffailureinfireagainstthatfornormaltemperaturedesign.ThisissimilartotheapproachusedwhenconsideringBuildingSituation1butonlyconsidersthebuildingstructureandnottheeffectsofflameorsmokespread.Itisnotaholisticapproachtofiresafety.Finally,thequestionsofarsonandterrorismmustbeconsidered.Deliberateactsoffireinitiationrangefromrelativelyminorincidentstoactsofmassdestruction.Actsofarsonarewellwithintheacceptedrangeoffireeventsexperiencedbybuild-ings(e.g.8%offirestartsinofficesaredeemed"suspicious").Thesimplestactistouseasmallheatsourcetostartafire.Theresultingfirewilldevelopslowlyinonelocationwithinthebuildingandwillmostprobablybecontrolledbythevariousfire-safetysystemswithinthebuilding.Theoutcomeislikelytobethesameevenifanaccelerantisusedtoassistfirespread.AnimportantillustrationofthisoccurredduringtheraceriotsinLosAngelesin1992(Hart1992)whenfireswerestartedinmanybuildingsoftenatmultiplelocations.Inthecaseofbuildingswithsprinklersystems,thedamagewaslimitedandthefiressignificantlycontrolled.Althoughtheintentwastodestroythebuildings,thefire-safetysystemswereabletolimittheresultingfires.Securitymeasuresareprovidedwithsystemssuchassprinklersystemsandinclude:lockingofvalves-anti-tampermonitoringlocationofvalvesinsecurelocationsFurthermore,accesstosignificantbuildingsisoftenrestrictedbysecuritymeasures.Theveryfactthattheabovestepshavebeentakendemonstratesthatactsofdestructionwithinbuildingsareconsideredalthoughmostactsofarsondonotinvolveanyattempttodisablethefire-safetysystems.Attheoneendofthespectrumis"simple"arsonandattheotherend,extremelyrareactswhereattemptsaremadetodestroythefire-safetysystemsalongwithsubstantialpartsofthebuilding.Thiscanbeonlyachievedthroughmassiveimpactortheuseofexplosives.Thelattermaybeachievedthroughexplosivesbeingintroducedintothebuildingorfromoutsidebymissileattack.Theformercouldresultfrommissileattackorfromthecollisionofalargeaircraft.Thegreaterthedestructivenessoftheact,thegreaterthemeansandknowledgerequired.Conversely,themoreextremetheact,thelessconfidencetherecanbeindesigningagainstsuchanact.Thisisbecausethemoreextremetheevent,theharderitistopredictpreciselyandthelessunderstoodwillbeitseffects.Theimportantpointtorecogniseisthatifsufficientmeanscanbeassembled,thenitwillalwaysbepossibletoovercomeaparticularbuildingdesign.Thustheseactsarecompletelydifferenttotheotherloadingstowhichabuildingissubjectedsuchaswind,earthquakeandgravityloading.Thisisbecausesuchactsofdestructionaretheworkofintelligentbeingsandtakeintoaccountthecharacteristicsofthetarget.Shouldhigh-risebuildingsbedesignedforgiventerroristactivities,thenterroristswillsimplyusegreatermeanstoachievetheendresult.Forexample,ifbuildingsweredesignedtoresisttheimpacteffectsfromacertainsizeaircraft,thentheuseofalargeraircraftormorethanoneaircraftcouldstillachievedestructionofthebuilding.Anappropriatestrategyisthereforetominimisethelikelihoodofmeansofmassdestructiongettingintothehandsofpersonsintentonsuchacts.Thisisnotanengineeringsolutionassociatedwiththebuildingstructure.Itshouldnotbeassumedthatstructuralsolutionsarealwaysthemostappropriate,orindeed,possible.Inthesameway,aircraftsarenotdesignedtosurviveamajorfireoracrashlandingbutstepsaretakentominimisethelikelihoodofeitheroccurrence.Themobilizationoflargequantitiesoffireload(thenormalcombustiblesonthefloors)simultaneouslyonnumerouslevelsthroughoutabuildingiswelloutsidefiresituationsenvisagedbycurrentfireteststandardsandprescriptiveregulations.Riskmanagementmeasurestoavoidsuchapossibilitymustbeconsidered.CONCLUSIONSFiredifferssignificantlyfromother“l(fā)oads”suchaswind,liveloadandearthquakesinrespectofitsoriginanditseffects.Duetothefactthatfireoriginatesfromhumanactivitiesorequipmentinstalledwithinbuildings,itispossibletodirectlyinfluencethepotentialeffectsonthebuildingbyreducingtherateoffirestartsandprovidingmeasurestodirectlylimitfireseverity.ThedesignofbuildingsforfiresafetyismostlyachievedbyfollowingtheprescriptiverequirementsofbuildingcodessuchastheBCA.Forsituationsthatfalloutsideofthescopeofsuchregulations,orwhereproposeddesignsarenotinaccordancewiththeprescriptiverequirements,itispossibletoundertakeperformance-basedfireengineeringdesigns.However,therearenodesigncodesorstandardsordetailedmethodologiesavailableforundertakingsuchdesigns.Buildingregulationsrequirethatsuchalternativedesignssatisfyperformancerequirementsandgivesomeguidanceastothebasisforacceptanceofthesedesigns(i.e.acceptancecriteria).Thispaperpresentsanumberofpossibleacceptancecriteria,allofwhichusethemeasureofrisklevelasthebasisforcomparison.Strictly,whenconsideringtherisksassociatedwithfireaholisticapproachthatconsidersalloftheaspectsrelevanttoachievingthedesignobjectivesandtheinterrelationshipsbetweentheseaspects,shouldbeadopted.Insomesituations,theperformanceofthebuildingstructuremaywellbesecondaryasfaraslifesafetyisconcerned.Inothersituations,theperformanceofthestructuremaybeoffundamentalimportancewithrespecttothedesignobjectives.Forsituationswheretheperformanceofthestructureiscriticalorwhereitisconsideredinisolationtootherfiresafetyaspects(i.e.directeffectsofheatandsmoke),itispossibletoassesstherequiredfireresistancebyusingFOSMorsimilartheoryasusedfornormaltemperaturedesign.Suchanapproachisdescribedinthispaper.Firedifferssignificantlyfromother“l(fā)oads”suchaswind,liveloadandearthquakesinrespectofitsori-ginanditseffects.Duetothefactthatfireorigi-natesfromhumanactivitiesorequipmentinstalledwithinbuildings,itispossibletodirectlyinfluencethepotentialeffectsonthebuildingbyreducingtherateoffirestartsandprovidingmeasurestodirectlylimitfireseverity.ThedesignofbuildingsforfiresafetyismostlyachievedbyfollowingtheprescriptiverequirementsofbuildingcodessuchastheBCA.Forsituationsthatfalloutsideofthescopeofsuchregulations,orwhereproposeddesignsarenotinaccordancewiththeprescriptiverequirements,itispossibletoundertakeperformance-basedfireengineeringdesigns.However,therearenodesigncodesorstandardsordetailedmethodologiesavailableforundertakingsuchdesigns.Buildingregulationsrequirethatsuchalternativedesignssatisfyperformancerequirementsandgivesomeguidanceasto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電影投資與分紅協(xié)議
- 二零二五年度公司對公司跨境電商物流借款合同
- 二零二五年度離婚后再婚無子女家庭財產(chǎn)分割及共同生活協(xié)議
- 2025年度網(wǎng)絡(luò)安全企業(yè)員工入職保密與競業(yè)限制合同
- 二零二五年度煙草專賣許可證及區(qū)域市場分銷權(quán)轉(zhuǎn)讓合同
- 2025年度特種作業(yè)安全協(xié)議書:包工頭與工人安全保障
- 二零二五年度汽修廠汽車維修市場分析承包協(xié)議
- 2025年度新能源儲能技術(shù)公司成立合作協(xié)議
- 幼兒園實習(xí)教師實習(xí)期間安全責(zé)任及意外傷害賠償合同
- 部編版小學(xué)道德與法治五年級下冊1《讀懂彼此的心》課件
- 《小學(xué)數(shù)學(xué)“對分課堂”教學(xué)模式的實踐探索》3900字(論文)
- 初中數(shù)學(xué)幾何《旋轉(zhuǎn)模型費馬點》壓軸題含答案解析
- 2025年中國中信集團招聘筆試參考題庫含答案解析
- 江西省宜春市豐城市第九中學(xué)2024-2025學(xué)年九年級上學(xué)期第二次段考化學(xué)試卷(日新班)(無答案)
- 燃氣公司安全生產(chǎn)實施方案
- 全國職業(yè)院校技能大賽高職組(生產(chǎn)事故應(yīng)急救援賽項)選拔賽考試題庫500題(含答案)
- 【MOOC】涂附磨具-河南工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 2024解析:第十四章內(nèi)能的利用-基礎(chǔ)練(解析版)
- 《制造業(yè)信息化》課件
- 2024年湖南省初中學(xué)業(yè)水平考試·數(shù)學(xué)
- 2024年度股權(quán)激勵代持協(xié)議
評論
0/150
提交評論