河北省唐山市灤州市重點達標名校2023年中考四模數(shù)學試題含解析_第1頁
河北省唐山市灤州市重點達標名校2023年中考四模數(shù)學試題含解析_第2頁
河北省唐山市灤州市重點達標名校2023年中考四模數(shù)學試題含解析_第3頁
河北省唐山市灤州市重點達標名校2023年中考四模數(shù)學試題含解析_第4頁
河北省唐山市灤州市重點達標名校2023年中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<22.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數(shù)根;④直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④4.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.145.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°6.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(7.下列運算結果是無理數(shù)的是()A.3× B. C. D.8.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環(huán)境質量有很大危害.2.5μm用科學記數(shù)法可表示為()A. B. C. D.9.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°10.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將直尺和直角三角尺按如圖方式擺放.若,,則________.12.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.13.如圖,為的直徑,與相切于點,弦.若,則______.14.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.15.如圖,在四邊形ABCD中,AC、BD是對角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,則線段BC的長是_____.16.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.三、解答題(共8題,共72分)17.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.18.(8分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.19.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN20.(8分)為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總人數(shù)的20%,并將調查結果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補充完整;已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?21.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).22.(10分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.23.(12分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.24.如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標大于-2,當m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.2、C【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“?!钡膶γ媸恰翱肌?,“中”的對面是“成”,故本選項錯誤;C、“預”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“?!钡膶γ媸恰俺伞保翱肌钡膶γ媸恰肮Α?,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.3、B【解析】

結合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當使用排除法,以及根據(jù)函數(shù)圖象與不等式的關系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標應該相等,但是圖中點A和點B的縱坐標顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關系,屬于較復雜的二次函數(shù)綜合選擇題.4、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.5、B【解析】

由圖形可知AC=AC,結合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關鍵.6、C【解析】利用正方形的性質結合銳角三角函數(shù)關系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數(shù)關系,得出正方形的邊長變化規(guī)律是解題關鍵.7、B【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數(shù);B選項:原式=,故B是無理數(shù);C選項:原式==6,故C不是無理數(shù);D選項:原式==12,故D不是無理數(shù)故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.8、C【解析】試題分析:大于0而小于1的數(shù)用科學計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學計數(shù)法計數(shù)9、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質,即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.10、D【解析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.二、填空題(本大題共6個小題,每小題3分,共18分)11、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質即可求出結果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質和三角形外角的性質,掌握三角形外角的性質是解題的關鍵.12、108°【解析】

如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點睛】本題考查正多邊形的內角計算,分析出△OCD是等腰三角形,然后求出頂角是關鍵.13、1【解析】

利用切線的性質得,利用直角三角形兩銳角互余可得,再根據(jù)平行線的性質得到,,然后根據(jù)等腰三角形的性質求出的度數(shù)即可.【詳解】∵與相切于點,∴AC⊥AB,∴,∴,∵,∴,,∵,∴,∴.故答案為1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.14、x≥1【解析】

把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據(jù)圖象可以知道當x≥1時,y=x+1的函數(shù)值不小于y=mx+n相應的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數(shù)與不等式(組)的關系及數(shù)形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數(shù)形結合.15、6【解析】

作DE⊥AB,交BA的延長線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據(jù)tan∠BAC=∠DAE=DEAE=33【詳解】如圖:作DE⊥AB,交BA的延長線于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴設AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【點睛】本題是解直角三角形問題,恰當?shù)貥嫿ㄝo助線是本題的關鍵,利用三角形全等證明邊相等,并借助同角的三角函數(shù)值求線段的長,與勾股定理相結合,依次求出各邊的長即可.16、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關鍵.三、解答題(共8題,共72分)17、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質進行對應邊的轉化.18、1.【解析】

根據(jù)二次根式性質,零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數(shù)的運算及特殊角三角形函數(shù)值.19、詳見解析.【解析】

只要證明∠EAM=∠ECN,根據(jù)同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點睛】本題考查平行線的判定和性質,解題的關鍵是熟練掌握平行線的性質和判定,屬于中考基礎題.20、(1)10,144;(2)詳見解析;(3)96【解析】

(1)依據(jù)C類型的人數(shù)以及百分比,即可得到該班留守的學生數(shù)量,依據(jù)B類型留守學生所占的百分比,即可得到其所在扇形的圓心角的度數(shù);(2)依據(jù)D類型留守學生的數(shù)量,即可將條形統(tǒng)計圖補充完整;(3)依據(jù)D類型的留守學生所占的百分比,即可估計該校將有多少名留守學生在此關愛活動中受益.【詳解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案為10,144;(2)10﹣2﹣4﹣2=2(人),如圖所示:(3)2400××20%=96(人),答:估計該校將有96名留守學生在此關愛活動中受益.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點睛】本題考查了圓周角定理,切線的性質,切線長定理,等腰三角形的性質和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.22、(1);(2).【解析】

(1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據(jù)題意可以畫出相應的樹狀圖,從而可以求得相應的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點睛】本題考查列表法與樹狀圖法,解答本題的關鍵是明確題意,列出相應的樹狀圖,求出相應的概率.23、(1)y=14x2-2x+3【解析】試題分析:(1)首先利用根與系數(shù)的關系得出:x1+x2=8試題解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構成△APC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論