版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
全等三角形判定一(SSS,ASA,AAS)(提高)【學(xué)習(xí)目標(biāo)】1.理解和掌握全等三角形判定方法1——“邊邊邊”,判定方法2——“角邊角”,判定方法3——“角角邊”;能運(yùn)用它們判定兩個(gè)三角形全等.2.能把證明角相等或線段相等的問題,轉(zhuǎn)化為證明它們所在的兩個(gè)三角形全等.【要點(diǎn)梳理】要點(diǎn)一、全等三角形判定1——“邊邊邊”全等三角形判定1——“邊邊邊”三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.(可以簡(jiǎn)寫成“邊邊邊”或“SSS”).要點(diǎn)詮釋:如圖,如果A'B'=AB,A'C'=AC,B'C'=BC,則△ABC≌△A'B'C'.要點(diǎn)二、全等三角形判定2——“角邊角”全等三角形判定2——“角邊角”兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角邊角”或“ASA”).要點(diǎn)詮釋:如圖,如果∠A=∠A',AB=A'B',∠B=∠B',則△ABC≌△要點(diǎn)三、全等三角形判定3——“角角邊”1.全等三角形判定3——“角角邊”兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角角邊”或“AAS”)要點(diǎn)詮釋:由三角形的內(nèi)角和等于180°可得兩個(gè)三角形的第三對(duì)角對(duì)應(yīng)相等.這樣就可由“角邊角”判定兩個(gè)三角形全等,也就是說(shuō),用角邊角條件可以證明角角邊條件,后者是前者的推論.2.三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.如圖,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.這說(shuō)明,三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.要點(diǎn)四、如何選擇三角形證全等1.可以從求證出發(fā),看求證的線段或角(用等量代換后的線段、角)在哪兩個(gè)可能全等的三角形中,可以證這兩個(gè)三角形全等;2.可以從已知出發(fā),看已知條件確定證哪兩個(gè)三角形全等;3.由條件和結(jié)論一起出發(fā),看它們一同確定哪兩個(gè)三角形全等,然后證它們?nèi)龋?.如果以上方法都行不通,就添加輔助線,構(gòu)造全等三角形.【典型例題】類型一、全等三角形的判定1——“邊邊邊”【答案與解析】證明:在△ABD和△ACE中,ABAC1、如圖,在△ABC和△ADE1、如圖,在△ABC和△ADE中,AB=AC,AD=AE,BD=CE,求證:∠BAD=∠CAE.BDCE∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形對(duì)應(yīng)角相等).【總結(jié)升華】把證明一對(duì)角或線段相等的問題,轉(zhuǎn)化為證明它們所在的兩個(gè)三角形全等,綜合應(yīng)用全等三角形的判定和性質(zhì).要證∠BAD=∠CAE,先找出這兩個(gè)角所在的三角形分別是△BDA和△CAE,然后證這兩個(gè)三角形全等.舉一反三:【變式】(2014秋?雙峰縣校級(jí)期中)如圖,已知AB=DC,若要用“SSS”判定△ABC≌△DCB,應(yīng)添加條件是.【答案】AC=DB.類型二、全等三角形的判定2——“角邊角” 2、如圖,G是線段AB上一點(diǎn),AC和DG相交于點(diǎn)E.請(qǐng)先作出∠ABC的平分線BF,交AC于點(diǎn)F;然后證明:當(dāng)AD∥BC,AD=BC,∠ABC=2∠ADG時(shí),DE=BF.【思路點(diǎn)撥】通過已知條件證明∠DAC=∠C,∠CBF=∠ADG,則可證△DAE≌△BCF【答案與解析】 證明:∵AD∥BC,ADGCBF ADBC DACC∴△DAE≌△BCF(ASA)∴DE=BF∴∠DAC=∠C∵BF∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE與△BCF中【變式】已知:如圖,在△MPN中,H是高M(jìn)Q和NR的交點(diǎn),且MQ=NQ.求證:HN=PM.【答案】證明:∵M(jìn)Q和NR是△MPN的高,∴∠MQN=∠MRN=90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ和△NHQ中,12MQNQ MQPNQH∴△MPQ≌△NHQ(ASA)∴PM=HN類型三、全等三角形的判定3——“角角邊”(2016?黃陂區(qū)模擬)如圖,在Rt△ABC中,∠ACB=90°,AC=BC,過C點(diǎn)作直線l,點(diǎn)D,E在直線l上,連接AD,BE,∠ADC=∠CEB=90°.求證:△ADC≌△CEB.【思路點(diǎn)撥】先證明∠DAC=∠ECB,根據(jù)AAS證△ADC≌△CEB.【答案與解析】證明:∵∠DAC+∠DCA=∠ECB+∠DCA=90°,∴∠DAC=∠ECB,,,∴△ADC≌△CEB(AAS).【總結(jié)升華】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、ASA、AAS等.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.平面內(nèi)有一等腰直角三角板(∠ACB=90°)和一直線MN.過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)(如圖1),易證:AF+BF=2CE.當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2的位置時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出你的猜想,不需證明.【思路點(diǎn)撥】過B作BH⊥CE與點(diǎn)H,易證△ACE≌△CBH,根據(jù)全等三角形的對(duì)應(yīng)邊相等,即可證得AF+BF=2CE.【答案與解析】解:圖2,AF+BF=2CE仍成立,證明:過B作BH⊥CE于點(diǎn)H,∵∠CBH+∠BCH=∠ACE+∠BCH=90°∴∠CBH=∠ACE在△ACE與△CBH中,ACHCBHAECCHB90ACBC∴△ACE≌△CBH.(AAS)∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.【總結(jié)升華】正確作出垂線,構(gòu)造全等三角形是解決本題的關(guān)鍵.舉一反三:【變式】已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點(diǎn),∠EDF=90°,∠EDF繞D點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC、CB于E、F.當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE⊥AC于E時(shí)(如圖11),易證S S S ;當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE和AC不垂直時(shí),在圖2情△DEF △CEF2△ABC況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)寫出你的猜想,不需證明.【答案】解:圖2成立;AD證明圖2:過點(diǎn)D作DMAC,DNBCD則DMEDNFMDN90°M在△AMD和△DNB中,E C NF B圖2AMD=DNB=90 AB ADBD∴△AMD≌△DNB(AAS)∴DM=DN∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME與△DNF中,EMDFDN90 DMDN MDENDF∴△DME≌△DNF(ASA) ∴S S △DME △DNF ∴S =S =S S . 四邊形DMCN 四邊形DECF △DEF △CEF1 可知S =S , 四邊形DMCN 2△ABC1 ∴S S S ,5、(2015春?龍崗區(qū)期末)小強(qiáng)為了測(cè)量一幢高樓高AB,在旗桿CD與樓之間選定一點(diǎn)P.測(cè)得旗桿頂C視線PC與地面夾角∠DPC=36°,測(cè)樓頂A視線PA與地面夾角∠APB=54°,量得P到樓底距離PB與旗桿高度相等,等于10米,量得旗桿與樓之間距離為DB=36米,小強(qiáng)計(jì)算出了樓高,樓高AB是多少米?【思路點(diǎn)撥】根據(jù)題意可得△CPD≌△PAB(ASA),進(jìn)而利用AB=DP=DB﹣PB求出即可.【答案與解析】解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°,在△CPD和△PAB中∵∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:樓高AB是26米.【總結(jié)升華】此題主要考查了全等三角形的應(yīng)用,根據(jù)題意得出△CPD≌△PAB是解題關(guān)鍵.【鞏固練習(xí)】一、選擇題1.(2014秋?西秀區(qū)校級(jí)期末)如圖,△ABC中,AB=AC,EB=EC,則由“SSS”可以判定()A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不對(duì)如圖,AB∥EF,DE∥AC,BD=CF,則圖中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE如圖,AB=BD,∠1=∠2,添加一個(gè)條件可使△ABC≌△DBE,則這個(gè)條件不可能是()A.AE=ECB.∠D=∠AC.BE=BCD.∠1=∠DEA下列判斷中錯(cuò)誤的是()A.有兩角和一邊對(duì)應(yīng)相等的兩個(gè)三角形全等B.有兩邊和一角對(duì)應(yīng)相等的兩個(gè)三角形全等C.有兩邊和其中一邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等D.有一邊對(duì)應(yīng)相等的兩個(gè)等邊三角形全等△ABC和△A'B'C'中,條件①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',則下列各組條件中,不能保證△ABC≌△A'B'C'的是()A.①②③ B.①②⑤ C.①③⑤ D.②⑤⑥6.如圖,點(diǎn)A在DE上,AC=CE,∠1=∠2=∠3,則DE的長(zhǎng)等于()A.DCB.BCC.ABD.AE+AC二、填空題7.已知:如圖,AE=DF,∠A=∠D,欲證ΔACE≌ΔDBF,判定定理為AAS,需要添加條件______;或添加條件______,證明全等的理由是ASA.8.(2014秋?白云區(qū)期末)如圖,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,則其根據(jù)是__________.9.(2016?濱湖區(qū)一模)如圖,點(diǎn)B、E、C、F在一條直線上,AB∥DE,且AB=DE,請(qǐng)?zhí)砑右粋€(gè)條件,使△ABC≌△DEF.10.如圖,AB∥CD,AD∥BC,OE=OF,圖中全等三角形共有______對(duì).11.如圖,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是1和2,則EF的長(zhǎng)是___________.12.如圖,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,則∠DCB=_________.三、解答題13.(2016春?會(huì)寧縣期中)已知:如圖,等腰三角形ABC中,AC=BC,∠ACB=90°,直線l經(jīng)過點(diǎn)C(點(diǎn)A、B都在直線l的同側(cè)),AD⊥l,BE⊥l,垂足分別為D、E.求證:△ADC≌△CEB.14.已知:如圖,△ABC中,ABC45°,CDAB于D,BEAC于E,BE與CD相交于點(diǎn)F.求證:BFAC15.(2014秋?杭州期末)如圖,DC∥AB,∠BAD和∠ADC的角平分線相交于E,過E的直線分別交DC、AB于C、B兩點(diǎn).求證:AD=AB+DC.【答案與解析】一、選擇題1.【答案】B.【答案】D;【答案】A;【解析】D選項(xiàng)可證得∠D=∠A,從而用ASA證全等.【答案】B;【解析】C選項(xiàng)和D選項(xiàng)都可以由SSS定理證全等.【答案】C;【解析】C選項(xiàng)是兩邊及一邊的對(duì)角對(duì)應(yīng)相等,不能保證全等.【答案】C;【解析】可證∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空題【答案】∠2=∠1;∠E=∠F.【答案】AAS;【答案】∠A=∠D或∠ACB=∠F;【解析】解:可添加條件為∠A=∠D或∠ACB=∠F.理由如下:∵AB∥DE,∴∠B=∠DEF.∵在△ABC和△DEF中,,,,,10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS證△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】66°;82【解析】可由SSS證明△ABC≌△DCB,∠OBC=∠OCB=41,所以∠DCB=2∠ABC=25°+41°=66°三、解答題13.【解析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度商業(yè)活動(dòng)場(chǎng)地借用及宣傳合同2篇
- 二零二五年度體育產(chǎn)業(yè)普通合伙企業(yè)合作協(xié)議范本4篇
- 2025年度5G產(chǎn)業(yè)投資理財(cái)協(xié)議
- 2025年三方知識(shí)產(chǎn)權(quán)轉(zhuǎn)讓還款協(xié)議書范本及內(nèi)容說(shuō)明3篇
- 個(gè)性化定制2024年版民間資金借貸協(xié)議范本版B版
- 2025年酒店住宿賠償協(xié)議范本
- 個(gè)人股份轉(zhuǎn)讓協(xié)議書
- 2025年標(biāo)準(zhǔn)植樹承包合同模板:森林碳匯項(xiàng)目專用3篇
- 個(gè)人汽車出租公司用協(xié)議細(xì)則(2024版)版B版
- 二零二五年度小微企業(yè)專項(xiàng)借貸合同
- 2024-2030年中國(guó)海泡石產(chǎn)業(yè)運(yùn)行形勢(shì)及投資規(guī)模研究報(bào)告
- 動(dòng)物醫(yī)學(xué)類專業(yè)生涯發(fā)展展示
- 2024年同等學(xué)力申碩英語(yǔ)考試真題
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 非遺文化走進(jìn)數(shù)字展廳+大數(shù)據(jù)與互聯(lián)網(wǎng)系創(chuàng)業(yè)計(jì)劃書
- 2024山西省文化旅游投資控股集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 科普知識(shí)進(jìn)社區(qū)活動(dòng)總結(jié)與反思
- 加油站廉潔培訓(xùn)課件
- 現(xiàn)金日記賬模板(帶公式)
- 消化內(nèi)科??票O(jiān)測(cè)指標(biāo)匯總分析
- 混凝土結(jié)構(gòu)工程施工質(zhì)量驗(yàn)收規(guī)范
評(píng)論
0/150
提交評(píng)論