版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
精選教課教課方案設計|Excellentteachingplan教師學科教課方案[20–20學年度第__學期]任教課科:_____________任教年級:_____________任教老師:_____________市實驗學校育人如同春風化雨,授業(yè)不惜蠟炬成灰精選教課教課方案設計|Excellentteachingplan《等比數(shù)列》教課方案銅陵五中戴娟一、教材剖析“等比數(shù)列”是《一般高中課程標準數(shù)學教科書——數(shù)學(必修5)》(人教版)第二章第四節(jié)的主要內(nèi)容。等比數(shù)列是一種特別的數(shù)列,它有著特別寬泛的實質(zhì)應用:如存款利息、購房貸款、財產(chǎn)折舊等一些計算問題.教材將等比數(shù)列安排在等差數(shù)列以后,有承上啟下的作用.一方面與等差數(shù)列有親密聯(lián)系,另一方面為進一步學習數(shù)列乞降等有關(guān)內(nèi)容做好準備。數(shù)列在高考取據(jù)有重要地點。本節(jié)課經(jīng)過比較式教課法,經(jīng)過平等差、等比兩種數(shù)列作比較來讓學生更好的認識和掌握等比數(shù)列,同時也穩(wěn)固以前學過的等差數(shù)列。本節(jié)課以一些實質(zhì)例子開頭,指引學生去研究生活中的數(shù)學識題。二、學情剖析高一學生正處于從初中到高中的過分階段,對數(shù)學思想和方法的認識還不夠,思想能力比較短缺,他們重視詳細問題的運算而小看對問題的抽象剖析。同時,高一階段又是學生形成優(yōu)秀的思想能力的要點時期。所以,本節(jié)教課方案一方面依據(jù)從特別到一般的認知規(guī)律,另一方面也增強察看、剖析、歸納、歸納能力培育。多半學生愿意踴躍參加,踴躍思慮,表現(xiàn)自我。所以教師能夠把盡可能多的時間、空間讓給學生,讓學生在參加的過程中,學習的自信心和學習熱忱等個性心理質(zhì)量獲取很好的培育。這也表現(xiàn)了教課工作中學生的主體作用。三、設計理念長久以來的講堂教課太甚于重視結(jié)論,小看過程.為了對付考試,為了使公式定理應用達到所謂“勤能補拙”,教課中不惜花大批的時間采納題海戰(zhàn)術(shù)來進行增強。這類觀點公式的教課常常到頭來只把學生增強成只會套用公式的解題機器,這樣的學生面對新問題就一籌莫展。數(shù)學是思想的體操,是培育學生剖析問題,解決問題的能力及創(chuàng)建能力的載體,新課程倡議:重申過程,重申學生研究新知識的經(jīng)歷和獲取新知的體驗,不可以再讓教課離開學生的心里感覺,一定讓學生有追求過程的體驗。鑒于以上原由,在設計本節(jié)課時,我考慮的不是簡單地告訴學生等比數(shù)列的定義及其通項公式,而是將內(nèi)容依據(jù)“問題情境——學生活動——數(shù)學建構(gòu)——數(shù)學運用——回首反省”的次序睜開,經(jīng)過列舉生活中的實例,給出等比數(shù)列的實質(zhì)背景,讓學生自己去發(fā)現(xiàn),去研究其意義,公式。從發(fā)現(xiàn)等比數(shù)列定義及通項公式的過程中讓學生領會到:有些看似陌生的知識其實不都是遙不行及的事情,經(jīng)過我們的努力,也能夠做一些看似數(shù)學家才能達成的事。在這個過程中,學生在講堂上的主體地位獲取充散發(fā)揮,極大地激發(fā)了學生的學習興趣,也提升了他們提出問題,解決問題的能力,培育了他們的創(chuàng)新能力,這正是新課程所倡議的教課理念。育人如同春風化雨,授業(yè)不惜蠟炬成灰精選教課教課方案設計|Excellentteachingplan四、教課目的(一)、知識與技術(shù)1、認識現(xiàn)實生活中存在著一類特別的數(shù)列;2、理解等比數(shù)列的觀點,研究并掌握等比數(shù)列的通項公式;3、能在詳細的問題情境中,發(fā)現(xiàn)數(shù)列的對照關(guān)系,并能用有關(guān)的知識解決相應的實質(zhì)問題;4、等比數(shù)列與等差數(shù)列的關(guān)系。(二)、過程與方法1、采納察看、思慮、類比、歸納、研究、得出結(jié)論的方法進行教課;2、發(fā)揮學生的主體作用,做好研究性活動;3、親密聯(lián)系實質(zhì),激發(fā)學生學習的踴躍性。(三)、感情態(tài)度與價值觀1、經(jīng)過生活中的大批實例,鼓舞學生踴躍思慮,激發(fā)學生對知識的研究精神和嚴肅仔細的科學態(tài)度,培育學生的類比、歸納的能力;2、經(jīng)過對有關(guān)實質(zhì)問題的解決,表現(xiàn)數(shù)學與實質(zhì)生活的親密關(guān)系,激發(fā)學生學習的興趣。五、教課重難點要點:等比數(shù)列的定義及通項公式難點:應用等比數(shù)列的定義及通項公式,解決有關(guān)問題教課準備:制作多媒體課件六、教課過程(一)、問題情境第一請同學們看以下幾個案例:(電腦顯示)情境1:一張紙,挨次對折,獲取的紙張的層次;情境2:“一尺之棰,日取其半,萬世不斷。”情境3:計算機病毒感染,每一輪每臺計算機感染20臺計算機,在不重復狀況下,這類病毒每一輪感染的計算機臺數(shù);問題1:上述例子能夠轉(zhuǎn)變?yōu)楹螛拥臄?shù)學識題?問題2:上述例子有何共同特色?(二)、學生活動經(jīng)過察看、聯(lián)想,發(fā)現(xiàn):1、上述例子能夠與數(shù)列聯(lián)系起來.(有了等差數(shù)列的學習作基礎)2、獲取以下3個數(shù)列:①1,2,22,23,111②1,2,4,8,1,20,202,203,育人如同春風化雨,授業(yè)不惜蠟炬成灰精選教課教課方案設計|Excellentteachingplan經(jīng)過議論,獲取這些情境的共同特色是從第二項起,每一項與它前面一項的比都相等(等于同一個常數(shù))。(三)、數(shù)學建構(gòu)1、問題:這類數(shù)列和等差數(shù)列同樣是一類重要的數(shù)列,誰能試著給這樣的數(shù)列取個名字?(學生經(jīng)過聯(lián)想、試試得出最適合的命名)等比數(shù)列2、歸納總結(jié),形成等比數(shù)列的觀點一般地,假如一個數(shù)列從第二項起,每一項與它的前一項的比等于同一個常.....數(shù),那么這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比;公比往常用.字母q表示(q0),即:an1q(nN,q為常數(shù))或anq(n2)anan13、平等比數(shù)列觀點深入理解教師用PPT展現(xiàn)例題?!纠?】判斷以下數(shù)列能否為等比數(shù)列(1)-1,-2,-4,-8,-16,1,-1,1,-1,1,0,1,0,5,5,5,5,x,x,x,x,;1,a,a2,a3;x0,x,x2,x3;(8)已知數(shù)列an的通項公式為an32n思慮:(1)公比q能為0嗎?為何?首項能為0嗎?(2)q>0與q<0時,數(shù)列符號的特色?(3)公比q1是什么數(shù)列?(4)形如a,a,a,(aR)的數(shù)列既是等差數(shù)列,又是等比數(shù)列對嗎?利用例題理解等比數(shù)列的遞推關(guān)系式:anq(n2)an1變式訓練數(shù)列an是公比q≠1的等比數(shù)列,判斷以下數(shù)列能否為等比數(shù)列?an(2)anan1(1)an1設計思路:這部分留有時間讓學生作短暫的議論,依據(jù)等比數(shù)列的定義進行判斷,育人如同春風化雨,授業(yè)不惜蠟炬成灰精選教課教課方案設計|Excellentteachingplan讓學生形象理解等比數(shù)列的定義,什么叫做后一項與前一項的比。經(jīng)過判斷得出等比數(shù)列需要注意的事項,教師讓學生先自己總結(jié),而后再給出詳細注意事項,讓學生充分理解定義部分。變式訓練難度稍大,用于培育提升學生剖析問題,解決問題的能力。4、提出問題,推導等比數(shù)列的通項公式方才我們獲取了等比數(shù)列的觀點,是用文字語言來表達的,可是在使用時常常需要符號化,怎樣將等比數(shù)列定義的內(nèi)容用數(shù)學表達式寫出?(提示可類比等差數(shù)列,由學生活動得出)方法一:(歸納法)由定義得:a2a1q;a3a2q(a1q)qa1q2;a4a3q(a1q2)qa1q3;;anan1qaqn1(aq0)11當n1時,等式也建立,即對全部nN建立。方法二:(累乘法)由定義式可得:(n1)個等式a2q,a3q,,anq,a1a2an1若將上述n1個等式相乘,即可得:a2a3a4anqn1,即:ana1qn1(n≥2)a1a2a3an1當n1時,左側(cè)a1,右側(cè)a1,所以等式建立,∴等比數(shù)列通項公式為:ana1qn1(a1q0).教師評論:(1)找尋通項即找尋項的一般規(guī)律,??上瓤刺貏e項,寫出幾項,再歸納出一般結(jié)論,這是研究數(shù)列問題常用的一種方法,叫不完整歸納法,但這類方法得出的通項公式還不夠謹慎,須對其進行證明。(2)方法2就是對方法1獲取的結(jié)論的一種證明,叫做累乘法.與推導等差數(shù)列通項公式用到的累加法近似,都一定注意對第一項為哪一項否建立進行增補說明。5、利用解決例題的形式推導出等比數(shù)列的通項公式的推行:anamqnm(a1q0)(四)、數(shù)學運用利用所學的等比數(shù)列知識,解決多媒體PPT上的例題?!纠?】在等比數(shù)列an中(1)已知a39,a6243,求a5;育人如同春風化雨,授業(yè)不惜蠟炬成灰精選教課教課方案設計|Excellentteachingplan(2)已知a19,an1,q2,求n833變式訓練等比數(shù)列an中,a12,an16,a2n256,求q設計思路:這部分首要任務是讓學生掌握等比數(shù)列的通項公式,其次更重要的是要學會怎么用所學知識解決有關(guān)問題,例2是慣例題,用來讓學生熟習使用等比數(shù)列的通項公式,后邊的變式訓練,難度略加大一些,作用是鼓舞學生踴躍思慮,用來激發(fā)學生的研究精神,讓學生在解決問題的過程中領會到有些問題看起來復雜很難,可是經(jīng)過自己的努力都能夠解決。激發(fā)了學生的學習興趣,培育他們發(fā)現(xiàn)問題,解決問題的能力,這也是新課程所倡議的理教課理念。(五)、回首小結(jié)1、本節(jié)課研究了等比數(shù)列的觀點,獲取了其通項公式;2、在研究內(nèi)容與方法上要與等差數(shù)列相類比,掌握它們的差別和聯(lián)系;(六)、課后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人租賃房屋租賃合同違約責任追究協(xié)議2篇
- 2025年度城市綠化帶垃圾清理承包服務合同4篇
- 個人勞務分包合同簡本2024年度6篇
- 二零二五年度儲煤場租賃與煤炭儲備應急物資采購合同3篇
- 2025版農(nóng)場消防應急物資儲備與配送服務合同4篇
- 2025年度魚塘承包與漁業(yè)產(chǎn)業(yè)鏈整合合同4篇
- 2025版木工行業(yè)學徒培訓勞動合同示范文本3篇
- 2025年版高端酒店專業(yè)門衛(wèi)及安保團隊招聘合同書4篇
- 二零二五年度木材行業(yè)供應鏈金融服務合同4篇
- 二零二四商鋪租賃補充協(xié)議合同范本:全面優(yōu)化租賃條款3篇
- 乳腺癌的綜合治療及進展
- 【大學課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓課件
- 2024年山東省泰安市初中學業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 2024安全員知識考試題(全優(yōu))
- 中國大百科全書(第二版全32冊)08
- 法律訴訟及咨詢服務 投標方案(技術(shù)標)
- 格式塔心理咨詢理論與實踐
- 英語六級詞匯(全)
評論
0/150
提交評論