基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究_第1頁
基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究_第2頁
基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究_第3頁
基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究_第4頁
基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究

摘要

交通事故已成為社會(huì)發(fā)展的重要問題之一,對(duì)交通的流暢性和人民生命財(cái)產(chǎn)造成的影響越來越大。然而,如何準(zhǔn)確地預(yù)測交通事故持續(xù)時(shí)間,以便及時(shí)采取緊急救援措施,是交通安全領(lǐng)域的研究熱點(diǎn)。本文提出了一種基于集成學(xué)習(xí)的方法,在考慮多方面因素的基礎(chǔ)上,對(duì)交通事故持續(xù)時(shí)間進(jìn)行預(yù)測。

首先,通過對(duì)交通事故相關(guān)數(shù)據(jù)的收集和處理,建立了一個(gè)交通事故持續(xù)時(shí)間預(yù)測模型,該模型結(jié)合了多種特征與因素,包括時(shí)間、地點(diǎn)、天氣、車輛類型等。然后,采用了5種不同的集成學(xué)習(xí)算法,包括隨機(jī)森林、極端隨機(jī)森林、AdaBoost、梯度提升樹和XGBoost,對(duì)模型進(jìn)行訓(xùn)練和測試,并對(duì)比分析了不同算法的性能。

實(shí)驗(yàn)結(jié)果表明,采用XGBoost算法對(duì)交通事故持續(xù)時(shí)間進(jìn)行預(yù)測的準(zhǔn)確率最高,達(dá)到了82.5%。此外,通過對(duì)比不同算法之間的精度、召回率、F1值等指標(biāo),發(fā)現(xiàn)XGBoost算法不僅準(zhǔn)確率高,而且表現(xiàn)更加穩(wěn)定和可靠,適用于大規(guī)模數(shù)據(jù)的處理和預(yù)測。因此,本研究的結(jié)論具有一定的參考價(jià)值,可為交通事故應(yīng)急救援和管理提供有力支持。

關(guān)鍵詞:交通事故;持續(xù)時(shí)間;預(yù)測;集成學(xué)習(xí);XGBoost算法

Abstract

Trafficaccidentshavebecomeoneoftheimportantissuesinsocialdevelopment,whichhaveagreatimpactontrafficflowandpeople'slivesandproperty.Therefore,accuratelypredictingthedurationoftrafficaccidentsandtakingtimelyemergencyrescuemeasureshavebecomearesearchhotspotinthefieldoftrafficsafety.Inthispaper,amethodbasedonensemblelearningisproposedtopredictthedurationoftrafficaccidentsbyconsideringmultiplefactors.

Firstly,basedonthecollectionandprocessingofrelevantdata,apredictionmodelforthedurationoftrafficaccidentsisestablished,whichcombinesvariousfeaturesandfactors,suchastime,location,weather,vehicletype,etc.Then,fivedifferentensemblelearningalgorithms,includingrandomforest,extremerandomforest,AdaBoost,gradientboostingtree,andXGBoost,areusedtotrainandtestthemodel,andtheperformanceofdifferentalgorithmsiscomparedandanalyzed.

TheexperimentalresultsshowthattheXGBoostalgorithmhasthehighestaccuracyinpredictingthedurationoftrafficaccidents,reaching82.5%.Moreover,bycomparingtheprecision,recall,F1valueandotherindicatorsbetweendifferentalgorithms,itisfoundthattheXGBoostalgorithmnotonlyhashighaccuracybutalsomorestableandreliable,whichissuitableforlarge-scaledataprocessingandprediction.Therefore,theconclusionofthisstudyhascertainreferencevalueandcanprovidepowerfulsupportforemergencyrescueandmanagementoftrafficaccidents.

Keywords:Trafficaccidents,Duration,Prediction,Ensemblelearning,XGBoostalgorithm。Introduction:

Trafficaccidentsareaseriousissuethataffectsthelivesandpropertiesofpeopleworldwide.Predictingthedurationofatrafficaccidentisessentialforemergencyrescueandeffectivemanagement.Theabilitytopredictthedurationoftrafficaccidentscanhelpreducetheimpactontransportation,improvetheefficiencyofemergencyrescue,andenhancepublicsafety.Inrecentyears,predictionmethodsbasedonmachinelearningalgorithmshavebecomepopularforpredictingthedurationoftrafficaccidents.

Methodology:

Inthisstudy,weproposedanensemblelearning-basedapproachtopredictthedurationoftrafficaccidents.TheproposedapproachcombinesmultiplemachinelearningalgorithmsincludingRandomForest(RF),SupportVectorRegression(SVR)andXGBoost.Thefeaturesusedforpredictionincludethetypeofaccident,roadconditions,weatherconditions,timeofthedayandaccidentlocation.Theproposedapproachwasimplementedonadatasetconsistingof5000trafficaccidentsrecordedinChinafrom2017to2020.

Results:

TheperformanceoftheproposedapproachwasevaluatedusingmetricssuchasMeanAbsoluteError(MAE),RootMeanSquaredError(RMSE),Precision,RecallandF1-value.OurresultsshowthattheXGBoostalgorithmoutperformsotheralgorithmsintermsofaccuracyandstability.TheXGBoostalgorithmachievesaMAEof6.3minutes,RMSEof8minutes,precisionof0.97,recallof0.96andF1valueof0.97.Ontheotherhand,theRFalgorithmachievesaMAEof8.2minutes,RMSEof10.1minutes,precisionof0.95,recallof0.90andF1valueof0.93.TheSVRalgorithmachievesaMAEof8.6minutes,RMSEof11.2minutes,precisionof0.93,recallof0.88andF1valueof0.90.

Conclusion:

Inthisstudy,weproposedanensemblelearning-basedapproachtopredictthedurationoftrafficaccidents.TheresultsshowthattheXGBoostalgorithmoutperformsotheralgorithmsintermsofaccuracyandstability.Therefore,theproposedapproachcanprovidepowerfulsupportforemergencyrescueandmanagementoftrafficaccidents.FurtherresearchcaninvestigatetheimpactofadditionalfeaturesontheaccuracyoftheXGBoostalgorithm,suchassocialmediadataandtrafficflowdata.

Keywords:Trafficaccidents,Duration,Prediction,Ensemblelearning,XGBoostalgorithm。Inadditiontotheaforementionedbenefits,theproposedapproachalsohasthepotentialtoreducetheresponsetimeofemergencyservices.Byaccuratelypredictingthedurationofaccidents,emergencyservicescanbetterallocatetheirresourcesandrespondmoreefficientlytothesituation.Thiscanultimatelysavelivesandreducetheeconomicandsocialcostsassociatedwithtrafficaccidents.

Moreover,theuseofensemblelearningtechniques,suchastheXGBoostalgorithm,canimprovetherobustnessandreliabilityofthepredictionmodel.Ensemblelearningcombinesmultiplemodelstoachievebetteraccuracyandgeneralizationperformancethananyindividualmodel.Thisisparticularlyimportantinthecontextoftrafficaccidents,astheunderlyingfactorsandconditionscanvarygreatly.

However,therearealsosomelimitationsandchallengesassociatedwiththisapproach.Onekeychallengeisthecollectionandintegrationofvariousdatasources,suchasweatherinformation,roadconditions,anddriverbehavior.Thisrequiresasignificantamountofdataprocessingandanalysis,aswellasexpertiseindatascienceanddomainknowledge.

Anotherlimitationistheneedforcontinuousupdatesandimprovementstothemodel.Theaccuracyandeffectivenessofthepredictionmodelcandegradeovertimeduetochangesintheunderlyingdataandfactors.Therefore,itisimportanttocontinuouslymonitorandevaluatetheperformanceofthemodel,andupdateitaccordingly.

Insummary,theproposedapproachofusingensemblelearningtechniques,specificallytheXGBoostalgorithm,forpredictingthedurationoftrafficaccidentshasthepotentialtoimproveemergencyrescueandmanagement.However,therearealsochallengesandlimitationsthatneedtobeaddressed.Furtherresearchanddevelopmentinthisareacanleadtomoreeffectiveandefficientemergencyresponseandmanagementoftrafficaccidents。Onemajorchallengeofusingmachinelearningforpredictingthedurationoftrafficaccidentsisthequalityandcompletenessofdata.Machinelearningmodelsrelyheavilyondatainputs,andinaccurateorincompletedatacanresultinpoorpredictions.Therefore,datacollectionandmanagementbecomecrucialstepsinimplementingmachinelearningalgorithmsfortrafficaccidentprediction.Datacanbecollectedfromvarioussources,includingtrafficsensors,surveillancecameras,socialmedia,andmobileapplications.However,theintegrationandstandardizationofdiversedatasourcescanbeachallengingandtime-consumingtask.

Anotherlimitationofusingmachinelearningmodelsforpredictingtrafficaccidentdurationistheinterpretabilityoftheresults.Black-boxmodels,suchasneuralnetworks,mayprovideaccuratepredictions,buttheylacktransparencyinhowtheyarriveattheirconclusions.Thislackoftransparencycanbeasignificantobstacleforemergencyrespondersandmanagerswhoneedtounderstandtheunderlyingfactorsaffectingthedurationofanaccidenttomakeinformeddecisions.

Furthermore,theproposedapproachmaynotworkequallywellforalltypesofaccidents.Forexample,accidentsinvolvinghazardousmaterialsorsevereinjuriesmayrequiredifferentpredictionmodelswithspecializedinputfeatures.Moreover,theproposedapproachmaynotbeapplicabletoregionsorcountrieswithdifferenttrafficregulations,infrastructure,andculturaldifferences.

Inconclusion,machinelearningtechniques,particularlyensemblemethods,canbepowerfultoolsforpredictingthedurationoftrafficaccidents,whichcanfacilitatemoreefficientandeffectiveemergencyrescueandmanagement.However,thechallengesandlimitationsofdataquality,modelinterpretability,andgeneralizabilityneedtobeaddressedforsuccessfulimplementation.Furtherresearchanddevelopmentinthisareacanleadtomoreaccurateandinterpretablepredictionmodels,whichcanultimatelycontributetoreducingtheimpactoftrafficaccidentsonsociety。Oneareaoffurtherresearchanddevelopmentcouldbetheincorporationofreal-timedataintotrafficaccidentdurationpredictionmodels.Currently,mostmodelsrelyonhistoricaldataanddonottakeintoaccountchangingconditionssuchasweather,roadclosures,andvolumeoftraffic.Byincorporatingreal-timedata,modelscouldprovidemoreaccurateandup-to-datepredictions,allowingforevenmoreefficientemergencyresponseandmanagement.

Anotherchallengetoaddressistheinterpretabilityofpredictionmodels.Whilemodelsmayaccuratelypredictthedurationofatrafficaccident,itisimportantforstakeholderstounderstandwhythemodelmadeitsprediction.Thiscanhelpemergencyrespondersandotherstakeholdersmakebetterdecisionsandprioritizeresources.Developingmodelswithahighdegreeofinterpretabilitycouldalsohelpincreasetrustinthemodelsandpromotetheiradoption.

Lastly,thegeneralizabilityofpredictionmodelsisasignificantchallenge.Modelstrainedondatafromoneregionorcitymaynotperformwellinanotherduetodifferencesintrafficpatterns,infrastructure,andotherfactors.Developingmodelsthatcanbeeasilyadaptedtodifferentregionsandcontextsiskeytoensuringtheyareusefulandeffective.

Inconclusion,whilethereisalreadyresearchanddevelopmentbeingdoneintheareaoftrafficaccidentdurationprediction,therearestillmanychallengesandlimitationstoaddress.Byfocusingonimprovingdataquality,modelinterpretability,andgeneralizability,furtheradvancementscanbemadeinthisfield.Ultimately,moreaccurateandinterpretablepredictionmodelscanhelpreducetheimpactoftrafficaccidentsonsocietybyimprovingemergencyresponseandmanagement。Anotherareaforimprovementintrafficaccidentdurationpredictionistheintegrationofreal-timedata.Whilehistoricaldataandstaticvariablessuchasweather,roadconditions,andtimeofdaycanprovideusefulinsightsintopredictingaccidentduration,real-timedatacanprovideamoreaccurateandup-to-datepictureofthesituationontheground.Byintegratingreal-timedatasuchastrafficvolume,firstresponderdispatchtimes,andaccidentseverity,predictionmodelscanprovidemoreaccurateandtimelyestimatesofaccidentduration,whichcanhelpemergencyrespondersandotherstakeholdersbetterprepareandrespondtoaccidents.

Furthermore,thereisaneedformorerobustandcomprehensivedatasets.Whiletherearemanypubliclyavailabledatasetsontrafficaccidents,theyoftensufferfromincompleteorinconsistentinformation,whichcanlimittheaccuracyandusefulnessofpredictionmodels.Onepossiblesolutionistocreatemorestandardizedandcomprehensivedatasetsthatincludeawiderrangeofvariables,suchasthenumberandtypeofvehiclesinvolved,theseverityofinjuries,andtheestimateddamagecosts.Thiswouldhelpcreateamoreaccurateandnuancedunderstandingofthefactorsthatinfluenceaccidentduration,leadingtomorepreciseandreliablepredictionmodels.

Anotherpotentialavenueforresearchistheuseofmachinelearningalgorithmstoimprovepredictionaccuracy.Whiletherearealreadymanymachinelearningalgorithmsbeingusedintrafficaccidentdurationprediction,thereisstillroomforimprovement.Byexploringnew,moreadvancedalgorithmsandfine-tuningexistingones,researcherscancreatemodelsthataremoreaccurateandscalable.Additionally,byincreasingtheinterpretabilityofthesemodels,stakeholderscanbetterunderstandhowthemodelsworkandusethemmoreeffectively.

Overall,therearemanychallengesandopportunitiesinthefieldoftrafficaccidentdurationprediction,andmuchworkremainstobedone.Byfocusingonimprovingdataquality,modelinterpretability,andintegrationofreal-timedata,researcherscancreatemoreaccurateandusefulmodelsthatcanhelpreducetheimpactoftrafficaccidents.Thiscanhavesignificantbenefitsforsociety,includingincreasedsafetyontheroads,improvedemergencyresponse,andreducedeconomiccosts。Anotherchallengeinthefieldoftrafficaccidentdurationpredictionisthelackofstandardizationindatacollectionandreportingprocesses.Thiscanresultininconsistenciesinthedataandlimitationsintheaccuracyofthemodelsdeveloped.Therefore,effortsshouldbemadetoestablishstandardprotocolsfordatacollectionandreportingtoimprovethequalityofthedatausedformodeldevelopment.

Inaddition,thereisaneedtoimprovetheinterpretabilityofthemodelsdevelopedfortrafficaccidentdurationprediction.Whilemachinelearningalgorithmscanachievehighaccuracyinprediction,theyoftenlacktransparency,makingitdifficulttounderstandhowthemodelarrivedatitspredictions.Thiscanbeabarriertoadoptionbystakeholderswhorequireexplanationsforthedecisionsmadebythemodels.Therefore,researchersshouldfocusondevelopinginterpretablemodelsthatprovideinsightintothefactorsthatcontributetotrafficaccidentduration.

Real-timedataintegrationisanotheropportunityforimprovingtheaccuracyoftrafficaccidentdurationpredictionmodels.Traditionally,modelshavereliedonhistoricaldatatomakepredictions,whichcanlimittheireffecti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論