




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究基于集成學(xué)習(xí)的交通事故持續(xù)時(shí)間預(yù)測研究
摘要
交通事故已成為社會(huì)發(fā)展的重要問題之一,對(duì)交通的流暢性和人民生命財(cái)產(chǎn)造成的影響越來越大。然而,如何準(zhǔn)確地預(yù)測交通事故持續(xù)時(shí)間,以便及時(shí)采取緊急救援措施,是交通安全領(lǐng)域的研究熱點(diǎn)。本文提出了一種基于集成學(xué)習(xí)的方法,在考慮多方面因素的基礎(chǔ)上,對(duì)交通事故持續(xù)時(shí)間進(jìn)行預(yù)測。
首先,通過對(duì)交通事故相關(guān)數(shù)據(jù)的收集和處理,建立了一個(gè)交通事故持續(xù)時(shí)間預(yù)測模型,該模型結(jié)合了多種特征與因素,包括時(shí)間、地點(diǎn)、天氣、車輛類型等。然后,采用了5種不同的集成學(xué)習(xí)算法,包括隨機(jī)森林、極端隨機(jī)森林、AdaBoost、梯度提升樹和XGBoost,對(duì)模型進(jìn)行訓(xùn)練和測試,并對(duì)比分析了不同算法的性能。
實(shí)驗(yàn)結(jié)果表明,采用XGBoost算法對(duì)交通事故持續(xù)時(shí)間進(jìn)行預(yù)測的準(zhǔn)確率最高,達(dá)到了82.5%。此外,通過對(duì)比不同算法之間的精度、召回率、F1值等指標(biāo),發(fā)現(xiàn)XGBoost算法不僅準(zhǔn)確率高,而且表現(xiàn)更加穩(wěn)定和可靠,適用于大規(guī)模數(shù)據(jù)的處理和預(yù)測。因此,本研究的結(jié)論具有一定的參考價(jià)值,可為交通事故應(yīng)急救援和管理提供有力支持。
關(guān)鍵詞:交通事故;持續(xù)時(shí)間;預(yù)測;集成學(xué)習(xí);XGBoost算法
Abstract
Trafficaccidentshavebecomeoneoftheimportantissuesinsocialdevelopment,whichhaveagreatimpactontrafficflowandpeople'slivesandproperty.Therefore,accuratelypredictingthedurationoftrafficaccidentsandtakingtimelyemergencyrescuemeasureshavebecomearesearchhotspotinthefieldoftrafficsafety.Inthispaper,amethodbasedonensemblelearningisproposedtopredictthedurationoftrafficaccidentsbyconsideringmultiplefactors.
Firstly,basedonthecollectionandprocessingofrelevantdata,apredictionmodelforthedurationoftrafficaccidentsisestablished,whichcombinesvariousfeaturesandfactors,suchastime,location,weather,vehicletype,etc.Then,fivedifferentensemblelearningalgorithms,includingrandomforest,extremerandomforest,AdaBoost,gradientboostingtree,andXGBoost,areusedtotrainandtestthemodel,andtheperformanceofdifferentalgorithmsiscomparedandanalyzed.
TheexperimentalresultsshowthattheXGBoostalgorithmhasthehighestaccuracyinpredictingthedurationoftrafficaccidents,reaching82.5%.Moreover,bycomparingtheprecision,recall,F1valueandotherindicatorsbetweendifferentalgorithms,itisfoundthattheXGBoostalgorithmnotonlyhashighaccuracybutalsomorestableandreliable,whichissuitableforlarge-scaledataprocessingandprediction.Therefore,theconclusionofthisstudyhascertainreferencevalueandcanprovidepowerfulsupportforemergencyrescueandmanagementoftrafficaccidents.
Keywords:Trafficaccidents,Duration,Prediction,Ensemblelearning,XGBoostalgorithm。Introduction:
Trafficaccidentsareaseriousissuethataffectsthelivesandpropertiesofpeopleworldwide.Predictingthedurationofatrafficaccidentisessentialforemergencyrescueandeffectivemanagement.Theabilitytopredictthedurationoftrafficaccidentscanhelpreducetheimpactontransportation,improvetheefficiencyofemergencyrescue,andenhancepublicsafety.Inrecentyears,predictionmethodsbasedonmachinelearningalgorithmshavebecomepopularforpredictingthedurationoftrafficaccidents.
Methodology:
Inthisstudy,weproposedanensemblelearning-basedapproachtopredictthedurationoftrafficaccidents.TheproposedapproachcombinesmultiplemachinelearningalgorithmsincludingRandomForest(RF),SupportVectorRegression(SVR)andXGBoost.Thefeaturesusedforpredictionincludethetypeofaccident,roadconditions,weatherconditions,timeofthedayandaccidentlocation.Theproposedapproachwasimplementedonadatasetconsistingof5000trafficaccidentsrecordedinChinafrom2017to2020.
Results:
TheperformanceoftheproposedapproachwasevaluatedusingmetricssuchasMeanAbsoluteError(MAE),RootMeanSquaredError(RMSE),Precision,RecallandF1-value.OurresultsshowthattheXGBoostalgorithmoutperformsotheralgorithmsintermsofaccuracyandstability.TheXGBoostalgorithmachievesaMAEof6.3minutes,RMSEof8minutes,precisionof0.97,recallof0.96andF1valueof0.97.Ontheotherhand,theRFalgorithmachievesaMAEof8.2minutes,RMSEof10.1minutes,precisionof0.95,recallof0.90andF1valueof0.93.TheSVRalgorithmachievesaMAEof8.6minutes,RMSEof11.2minutes,precisionof0.93,recallof0.88andF1valueof0.90.
Conclusion:
Inthisstudy,weproposedanensemblelearning-basedapproachtopredictthedurationoftrafficaccidents.TheresultsshowthattheXGBoostalgorithmoutperformsotheralgorithmsintermsofaccuracyandstability.Therefore,theproposedapproachcanprovidepowerfulsupportforemergencyrescueandmanagementoftrafficaccidents.FurtherresearchcaninvestigatetheimpactofadditionalfeaturesontheaccuracyoftheXGBoostalgorithm,suchassocialmediadataandtrafficflowdata.
Keywords:Trafficaccidents,Duration,Prediction,Ensemblelearning,XGBoostalgorithm。Inadditiontotheaforementionedbenefits,theproposedapproachalsohasthepotentialtoreducetheresponsetimeofemergencyservices.Byaccuratelypredictingthedurationofaccidents,emergencyservicescanbetterallocatetheirresourcesandrespondmoreefficientlytothesituation.Thiscanultimatelysavelivesandreducetheeconomicandsocialcostsassociatedwithtrafficaccidents.
Moreover,theuseofensemblelearningtechniques,suchastheXGBoostalgorithm,canimprovetherobustnessandreliabilityofthepredictionmodel.Ensemblelearningcombinesmultiplemodelstoachievebetteraccuracyandgeneralizationperformancethananyindividualmodel.Thisisparticularlyimportantinthecontextoftrafficaccidents,astheunderlyingfactorsandconditionscanvarygreatly.
However,therearealsosomelimitationsandchallengesassociatedwiththisapproach.Onekeychallengeisthecollectionandintegrationofvariousdatasources,suchasweatherinformation,roadconditions,anddriverbehavior.Thisrequiresasignificantamountofdataprocessingandanalysis,aswellasexpertiseindatascienceanddomainknowledge.
Anotherlimitationistheneedforcontinuousupdatesandimprovementstothemodel.Theaccuracyandeffectivenessofthepredictionmodelcandegradeovertimeduetochangesintheunderlyingdataandfactors.Therefore,itisimportanttocontinuouslymonitorandevaluatetheperformanceofthemodel,andupdateitaccordingly.
Insummary,theproposedapproachofusingensemblelearningtechniques,specificallytheXGBoostalgorithm,forpredictingthedurationoftrafficaccidentshasthepotentialtoimproveemergencyrescueandmanagement.However,therearealsochallengesandlimitationsthatneedtobeaddressed.Furtherresearchanddevelopmentinthisareacanleadtomoreeffectiveandefficientemergencyresponseandmanagementoftrafficaccidents。Onemajorchallengeofusingmachinelearningforpredictingthedurationoftrafficaccidentsisthequalityandcompletenessofdata.Machinelearningmodelsrelyheavilyondatainputs,andinaccurateorincompletedatacanresultinpoorpredictions.Therefore,datacollectionandmanagementbecomecrucialstepsinimplementingmachinelearningalgorithmsfortrafficaccidentprediction.Datacanbecollectedfromvarioussources,includingtrafficsensors,surveillancecameras,socialmedia,andmobileapplications.However,theintegrationandstandardizationofdiversedatasourcescanbeachallengingandtime-consumingtask.
Anotherlimitationofusingmachinelearningmodelsforpredictingtrafficaccidentdurationistheinterpretabilityoftheresults.Black-boxmodels,suchasneuralnetworks,mayprovideaccuratepredictions,buttheylacktransparencyinhowtheyarriveattheirconclusions.Thislackoftransparencycanbeasignificantobstacleforemergencyrespondersandmanagerswhoneedtounderstandtheunderlyingfactorsaffectingthedurationofanaccidenttomakeinformeddecisions.
Furthermore,theproposedapproachmaynotworkequallywellforalltypesofaccidents.Forexample,accidentsinvolvinghazardousmaterialsorsevereinjuriesmayrequiredifferentpredictionmodelswithspecializedinputfeatures.Moreover,theproposedapproachmaynotbeapplicabletoregionsorcountrieswithdifferenttrafficregulations,infrastructure,andculturaldifferences.
Inconclusion,machinelearningtechniques,particularlyensemblemethods,canbepowerfultoolsforpredictingthedurationoftrafficaccidents,whichcanfacilitatemoreefficientandeffectiveemergencyrescueandmanagement.However,thechallengesandlimitationsofdataquality,modelinterpretability,andgeneralizabilityneedtobeaddressedforsuccessfulimplementation.Furtherresearchanddevelopmentinthisareacanleadtomoreaccurateandinterpretablepredictionmodels,whichcanultimatelycontributetoreducingtheimpactoftrafficaccidentsonsociety。Oneareaoffurtherresearchanddevelopmentcouldbetheincorporationofreal-timedataintotrafficaccidentdurationpredictionmodels.Currently,mostmodelsrelyonhistoricaldataanddonottakeintoaccountchangingconditionssuchasweather,roadclosures,andvolumeoftraffic.Byincorporatingreal-timedata,modelscouldprovidemoreaccurateandup-to-datepredictions,allowingforevenmoreefficientemergencyresponseandmanagement.
Anotherchallengetoaddressistheinterpretabilityofpredictionmodels.Whilemodelsmayaccuratelypredictthedurationofatrafficaccident,itisimportantforstakeholderstounderstandwhythemodelmadeitsprediction.Thiscanhelpemergencyrespondersandotherstakeholdersmakebetterdecisionsandprioritizeresources.Developingmodelswithahighdegreeofinterpretabilitycouldalsohelpincreasetrustinthemodelsandpromotetheiradoption.
Lastly,thegeneralizabilityofpredictionmodelsisasignificantchallenge.Modelstrainedondatafromoneregionorcitymaynotperformwellinanotherduetodifferencesintrafficpatterns,infrastructure,andotherfactors.Developingmodelsthatcanbeeasilyadaptedtodifferentregionsandcontextsiskeytoensuringtheyareusefulandeffective.
Inconclusion,whilethereisalreadyresearchanddevelopmentbeingdoneintheareaoftrafficaccidentdurationprediction,therearestillmanychallengesandlimitationstoaddress.Byfocusingonimprovingdataquality,modelinterpretability,andgeneralizability,furtheradvancementscanbemadeinthisfield.Ultimately,moreaccurateandinterpretablepredictionmodelscanhelpreducetheimpactoftrafficaccidentsonsocietybyimprovingemergencyresponseandmanagement。Anotherareaforimprovementintrafficaccidentdurationpredictionistheintegrationofreal-timedata.Whilehistoricaldataandstaticvariablessuchasweather,roadconditions,andtimeofdaycanprovideusefulinsightsintopredictingaccidentduration,real-timedatacanprovideamoreaccurateandup-to-datepictureofthesituationontheground.Byintegratingreal-timedatasuchastrafficvolume,firstresponderdispatchtimes,andaccidentseverity,predictionmodelscanprovidemoreaccurateandtimelyestimatesofaccidentduration,whichcanhelpemergencyrespondersandotherstakeholdersbetterprepareandrespondtoaccidents.
Furthermore,thereisaneedformorerobustandcomprehensivedatasets.Whiletherearemanypubliclyavailabledatasetsontrafficaccidents,theyoftensufferfromincompleteorinconsistentinformation,whichcanlimittheaccuracyandusefulnessofpredictionmodels.Onepossiblesolutionistocreatemorestandardizedandcomprehensivedatasetsthatincludeawiderrangeofvariables,suchasthenumberandtypeofvehiclesinvolved,theseverityofinjuries,andtheestimateddamagecosts.Thiswouldhelpcreateamoreaccurateandnuancedunderstandingofthefactorsthatinfluenceaccidentduration,leadingtomorepreciseandreliablepredictionmodels.
Anotherpotentialavenueforresearchistheuseofmachinelearningalgorithmstoimprovepredictionaccuracy.Whiletherearealreadymanymachinelearningalgorithmsbeingusedintrafficaccidentdurationprediction,thereisstillroomforimprovement.Byexploringnew,moreadvancedalgorithmsandfine-tuningexistingones,researcherscancreatemodelsthataremoreaccurateandscalable.Additionally,byincreasingtheinterpretabilityofthesemodels,stakeholderscanbetterunderstandhowthemodelsworkandusethemmoreeffectively.
Overall,therearemanychallengesandopportunitiesinthefieldoftrafficaccidentdurationprediction,andmuchworkremainstobedone.Byfocusingonimprovingdataquality,modelinterpretability,andintegrationofreal-timedata,researcherscancreatemoreaccurateandusefulmodelsthatcanhelpreducetheimpactoftrafficaccidents.Thiscanhavesignificantbenefitsforsociety,includingincreasedsafetyontheroads,improvedemergencyresponse,andreducedeconomiccosts。Anotherchallengeinthefieldoftrafficaccidentdurationpredictionisthelackofstandardizationindatacollectionandreportingprocesses.Thiscanresultininconsistenciesinthedataandlimitationsintheaccuracyofthemodelsdeveloped.Therefore,effortsshouldbemadetoestablishstandardprotocolsfordatacollectionandreportingtoimprovethequalityofthedatausedformodeldevelopment.
Inaddition,thereisaneedtoimprovetheinterpretabilityofthemodelsdevelopedfortrafficaccidentdurationprediction.Whilemachinelearningalgorithmscanachievehighaccuracyinprediction,theyoftenlacktransparency,makingitdifficulttounderstandhowthemodelarrivedatitspredictions.Thiscanbeabarriertoadoptionbystakeholderswhorequireexplanationsforthedecisionsmadebythemodels.Therefore,researchersshouldfocusondevelopinginterpretablemodelsthatprovideinsightintothefactorsthatcontributetotrafficaccidentduration.
Real-timedataintegrationisanotheropportunityforimprovingtheaccuracyoftrafficaccidentdurationpredictionmodels.Traditionally,modelshavereliedonhistoricaldatatomakepredictions,whichcanlimittheireffecti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 作協(xié)議合同范本
- 關(guān)于管道疏通合同范本
- 別墅弱電智能合同范本
- 產(chǎn)品合同范本模板寫
- 農(nóng)資代理合同范本
- 上海小時(shí)工外包合同范本
- 個(gè)人續(xù)簽合同范本
- 農(nóng)村開發(fā)項(xiàng)目合同范本
- 寫電子產(chǎn)品合同范本
- 《中國心力衰竭診斷和治療指南2024》解讀
- 中小學(xué)智慧校園建設(shè)方案
- 中國食物成分表2020年權(quán)威完整改進(jìn)版
- 【MOOC】影視鑒賞-揚(yáng)州大學(xué) 中國大學(xué)慕課MOOC答案
- 危險(xiǎn)性較大的分部分項(xiàng)工程清單安全管理措施
- 高壓輸電線路質(zhì)量、檢查、驗(yàn)收培訓(xùn)課件
- 二年級(jí)數(shù)學(xué)下冊(cè)重點(diǎn)思維每日一練小紙條
- 混合型頸椎病課件
- 國家安全教育教案分享
- 2024公共數(shù)據(jù)授權(quán)運(yùn)營實(shí)施方案
- 5A護(hù)理模式在老年手術(shù)患者VTE防控中的應(yīng)用課件
評(píng)論
0/150
提交評(píng)論