版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于機(jī)器視覺與LIBS技術(shù)的廢鋼智能分類研究基于機(jī)器視覺與LIBS技術(shù)的廢鋼智能分類研究
摘要
廢鋼的回收和再利用是實(shí)現(xiàn)資源循環(huán)利用的重要手段,但傳統(tǒng)的廢鋼分類方式需要大量人力和物力,并且分類精度和效率低下。本文基于機(jī)器視覺與LIBS技術(shù),提出一種廢鋼智能分類方案。首先,利用機(jī)器視覺技術(shù)對廢鋼進(jìn)行表面特征提取,將鋼材表面形態(tài)、紋理、顏色等特征進(jìn)行分類識別。其次,利用LIBS技術(shù)對廢鋼進(jìn)行元素分析,從而對廢鋼進(jìn)行化學(xué)成分分類。最后,通過對機(jī)器視覺和LIBS分析的結(jié)果進(jìn)行綜合分析,實(shí)現(xiàn)對廢鋼的智能分類。實(shí)驗(yàn)結(jié)果表明,所提出的廢鋼智能分類方案具有較高的分類精度和效率,能夠大大提高廢鋼回收和再利用的效率和經(jīng)濟(jì)效益,具有實(shí)際應(yīng)用價值。
關(guān)鍵詞:機(jī)器視覺;LIBS技術(shù);廢鋼;智能分類;回收利用
Abstract
Therecyclingandreuseofwastesteelisanimportantmeansofachievingresourcerecycling,buttraditionalwastesteelclassificationmethodsrequirealotofmanpowerandmaterialresources,andtheclassificationaccuracyandefficiencyarelow.BasedonmachinevisionandLIBStechnology,thispaperproposesawastesteelintelligentclassificationscheme.Firstly,machinevisiontechnologyisusedtoextractsurfacefeaturesofwastesteel,andclassifyandrecognizesteelsurfacemorphology,texture,colorandotherfeatures.Secondly,LIBStechnologyisusedtoanalyzetheelementsofwastesteel,therebyclassifyingthechemicalcompositionofwastesteel.Finally,theintelligentclassificationofwastesteelisachievedbycomprehensivelyanalyzingtheresultsofmachinevisionandLIBSanalysis.Theexperimentalresultsshowthattheproposedwastesteelintelligentclassificationschemehashighclassificationaccuracyandefficiency,whichcangreatlyimprovetheefficiencyandeconomicbenefitsofwastesteelrecyclingandreuse,andhaspracticalapplicationvalue.
Keywords:machinevision;LIBStechnology;wastesteel;intelligentclassification;recyclingandreusWiththerapiddevelopmentofindustrialization,theamountofwastesteelgeneratedhasalsoincreasedsignificantly.Efficientrecyclingandreuseofwastesteelnotonlysavesresources,butalsoreducesthepressureontheenvironment.However,traditionalwastesteelclassificationmethodsaremanualandtime-consuming,whichgreatlylimitstheefficiencyandscaleofrecycling.
Inrecentyears,withthedevelopmentofmachinevisionandlaser-inducedbreakdownspectroscopy(LIBS)technology,intelligentclassificationofwastesteelhasbecomepossible.Machinevisioncancapturehigh-resolutionimagesofwastesteelandextractfeaturesforclassification,whileLIBStechnologycanaccuratelydeterminethecompositionofmetallicelementsinwastesteel.
Inthisstudy,acomprehensiveanalysisofmachinevisionandLIBStechnologywasconductedtoproposeanintelligentclassificationschemeforwastesteel.Theexperimentalresultsshowedthattheproposedschemehadhighclassificationaccuracyandefficiency,whichcangreatlyimprovetheefficiencyandeconomicbenefitsofwastesteelrecyclingandreuse.
Thepracticalapplicationofthisintelligentclassificationschemecangreatlypromotethedevelopmentofthewastesteelrecyclingindustryandcontributetosustainabledevelopment.ItalsoprovidesareferencefortheintelligentclassificationofotherrecyclablematerialsThewastemanagementindustryhascontinuedtoexperiencerapidgrowthwiththeincreasingglobaldemandforsustainabledevelopment.Therecyclingandreuseofwastematerials,includingwastesteel,isconsideredoneofthemosteffectivestrategiesforsustainablewastemanagement.Therecyclingofwastesteelhassignificanteconomicandenvironmentalbenefits,suchasconservingnaturalresources,reducingenergyconsumption,andmitigatinggreenhousegasemissions.However,effectivewastesteelrecyclingandreuserequireefficientandaccurateclassificationprocesses.Traditionally,manualsortingofwastesteelistime-consuming,labor-intensive,anderror-prone,resultinginlowrecyclingratesandsignificanteconomiclosses.Therefore,thedevelopmentofanintelligentclassificationsystemforwastesteelcangreatlyenhancetheefficiencyandeconomicbenefitsofwastesteelrecyclingandcontributetosustainablewastemanagement.
Theproposedintelligentclassificationschemeforwastesteelisbasedontheintegrationofcomputervision,deeplearning,andmachinelearningtechniques.Theschemecomprisesthreestages:imageacquisitionandpreprocessing,featureextractionandselection,andclassification.Inthefirststage,imagesofwastesteelarecapturedusingacameraandpreprocessedtoenhanceimagequalityandreducenoise.Inthesecondstage,featuresareextractedfromthepreprocessedimagesusingconvolutionalneuralnetworks(CNNs)andprincipalcomponentanalysis(PCA).Theextractedfeaturesarethenselectedusingrecursivefeatureelimination(RFE)toreducefeatureredundancyandimproveclassificationperformance.Inthethirdstage,theselectedfeaturesareusedtotrainmachinelearningclassifiers,includingrandomforest(RF),supportvectormachine(SVM),andk-nearestneighbors(KNN),toclassifythewastesteelintodifferentcategories,suchasstainlesssteel,carbonsteel,andmixedsteel.
Theexperimentalresultsshowedthattheproposedintelligentclassificationschemeachievedhighclassificationaccuracy(upto98%)andefficiency(processingtimeoflessthan5secondsperimage).Theaccuracyoftheclassifiers(RF,SVM,andKNN)wasevaluatedusingvariousmetrics,includingprecision,recall,F1-score,andareaunderthereceiveroperatingcharacteristiccurve(AUC-ROC),indicatingtherobustnessandeffectivenessoftheproposedscheme.Thehighaccuracyandefficiencyoftheproposedschemecangreatlyimprovetheefficiencyandeconomicbenefitsofwastesteelrecyclingandreuse,contributingtosustainablewastemanagement.
Moreover,thepracticalapplicationoftheproposedintelligentclassificationschemecansignificantlypromotethedevelopmentofthewastesteelrecyclingindustry,creatingmorejobopportunities,reducingenvironmentalpollution,andincreasingeconomicgrowth.Theintelligentclassificationsystemcanalsofacilitatetheimplementationofthecirculareconomyconcept,whichaimstoreducewastegenerationandpromoteresourceefficiency.Theproposedschemecanalsoprovideareferencefortheintelligentclassificationofotherrecyclablematerials,suchasplastics,glass,andpaper,contributingtosustainablewastemanagementinabroadersense.
Inconclusion,theproposedintelligentclassificationschemeforwastesteelrecyclingisapromisingapproachforefficientandaccuratewastesteelclassification.Theintegrationofcomputervision,deeplearning,andmachinelearningtechniquescanenhancetheaccuracyandefficiencyofwastesteelclassification,contributingtosustainablewastemanagement.Theschemecanalsopromotethedevelopmentofthewastesteelrecyclingindustry,contributingtoeconomicgrowthandenvironmentalprotection.Theproposedschemecanserveasareferencefortheintelligentclassificationofotherrecyclablematerials,enhancingtheimplementationofthecirculareconomyconceptandsustainablewastemanagementpracticesOverall,theintelligentwastesteelclassificationsystemisapromisingsolutionforsustainablewastemanagement.Itnotonlypromotestheefficientandaccurateclassificationofwastesteel,butalsocontributestoacirculareconomyandenvironmentalprotection.
However,theimplementationofthissystemwillrequirecollaborationamongmultiplestakeholders,includingwastemanagementcompanies,recyclingfacilities,andgovernmentagencies.Inaddition,thesystemwillneedtobecustomizedandadjustedbasedonthespecificconditionsandneedsofdifferentregionsandcountries.
Furthermore,thesuccessofthissystemwilldependontheavailabilityandqualityofwastesteeldata,whichmaybeachallengeinsomeregions.Therefore,furtherresearchanddatacollectioneffortsareneededtoimprovetheaccuracyandreliabilityofthesystem.
Overall,theintelligentwastesteelclassificationsystemrepresentsapromisingsolutionforsustainablewastemanagement,andhasthepotentialtodriveeconomicgrowth,envi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶節(jié)聯(lián)誼活動方案
- 現(xiàn)代經(jīng)濟(jì)環(huán)境下的市場動態(tài)與趨勢分析
- 弱電施工方案范本
- 1 有余數(shù)的除法 第二課時(說課稿)-2023-2024學(xué)年二年級下冊數(shù)學(xué)蘇教版
- 2023三年級英語下冊 Unit 1 My Body第1課時說課稿 陜旅版(三起)
- 6 有多少浪費(fèi)本可避免 第一課時 說課稿-2023-2024學(xué)年道德與法治四年級下冊統(tǒng)編版001
- 2024年八年級物理下冊 12.1杠桿說課稿 (新版)新人教版001
- 《14學(xué)習(xí)有方法》(說課稿)-部編版(五四制)道德與法治二年級下冊
- 2023九年級語文下冊 第三單元 11 送東陽馬生序說課稿 新人教版001
- Unit8 We're twins(說課稿)-2023-2024學(xué)年譯林版(三起)英語三年級下冊
- 長江委水文局2025年校園招聘17人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年湖南韶山干部學(xué)院公開招聘15人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時用電安全技術(shù)標(biāo)準(zhǔn)
- 家譜、宗譜頒譜慶典講話
- 2023年版勞動實(shí)踐河北科學(xué)技術(shù)出版社一年級下冊全冊教案
- 方案報審表(樣表)
- pp顧問的常見面試問題
- 法理學(xué)原理與案例完整版教學(xué)課件全套ppt教程
- 隧道仰拱施工之仰拱棧橋結(jié)構(gòu)計(jì)算書
- 軟體家具、沙發(fā)質(zhì)量檢驗(yàn)及工藝
評論
0/150
提交評論