版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法
摘要
數(shù)字孿生是一種基于物理模型和數(shù)字仿真技術(shù)的新型制造方法,能夠?qū)a(chǎn)品生命周期的各個階段進行數(shù)字化重構(gòu),從而實現(xiàn)產(chǎn)品設(shè)計和制造的全程智能化控制。針對切削加工過程的高精度和高效率要求,本文提出了一種面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法。首先,通過對切削過程的物理特征進行建模和仿真,生成對應(yīng)的數(shù)字孿生模型。接著,利用遺傳算法和神經(jīng)網(wǎng)絡(luò)技術(shù)進行自適應(yīng)優(yōu)化和演化,實現(xiàn)數(shù)字孿生模型的個性化擬態(tài)建模和演化,提高切削加工效率和精度。最后,通過實驗驗證,證明了本文所提出的方法在提升切削加工質(zhì)量和效率方面具有良好的應(yīng)用效果。
關(guān)鍵詞:數(shù)字孿生;切削加工;擬態(tài)建模;自適應(yīng)演化;遺傳算法;神經(jīng)網(wǎng)絡(luò)技術(shù)
Abstract
Digitaltwinisanewtypeofmanufacturingmethodbasedonphysicalmodelsanddigitalsimulationtechnology,whichcandigitizeandreconstructvariousstagesoftheproductlifecycle,achieveintelligentcontroloftheentireprocessofproductdesignandmanufacturing.Inordertomeetthehighprecisionandhighefficiencyrequirementsofthecuttingprocess,thispaperproposesadigitaltwinmorphologicalmodelingandadaptiveevolutionmethodforthecuttingprocess.Firstly,thephysicalcharacteristicsofthecuttingprocessaremodeledandsimulatedtogenerateacorrespondingdigitaltwinmodel.Then,adaptiveoptimizationandevolutionarecarriedoutusinggeneticalgorithmandneuralnetworktechnologytorealizepersonalizedmorphologicalmodelingandevolutionofthedigitaltwinmodel,improvingtheefficiencyandaccuracyofthecuttingprocess.Finally,throughexperiments,itisprovedthattheproposedmethodhasgoodapplicationeffectinimprovingthequalityandefficiencyofcutting.
Keywords:Digitaltwin;Cuttingprocess;Morphologicalmodeling;Adaptiveevolution;Geneticalgorithm;NeuralnetworktechnologInrecentyears,withthedevelopmentofthedigitaltwintechnology,ithasbeenwidelyappliedinvariousindustrialfieldstoimprovetheefficiencyandaccuracyofmanufacturingprocesses.Inthecuttingprocess,thedigitaltwinmodelcansimulatethecuttingprocessandpredictthecuttingparameters,whichcaneffectivelyreducethetimeandcostofthecuttingprocess.However,duetoindividualdifferencesinmaterialsandcuttingtools,itisdifficulttoaccuratelymodelthecuttingprocesswithasinglegenericdigitaltwinmodel.
Toaddressthisissue,personalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelareproposedinthisstudy.Thegeneticalgorithmisusedtooptimizetheparametersofthemorphologicalmodel,whichcangenerateapersonalizeddigitaltwinmodelforeachcuttingprocess.Moreover,neuralnetworktechnologyisusedtotrainthedigitaltwinmodelforadaptiveevolution,whichcancontinuallyimprovetheaccuracyofthemodelduringthecuttingprocess.
Theproposedmethodisappliedinthecuttingprocessofametalmaterial,andtheresultsshowthatwiththepersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodel,thecuttingefficiencyandaccuracyaresignificantlyimproved.Comparedwiththetraditionalcuttingprocess,theproposedmethodcanreducethecuttingtimeby20%andimprovethesurfaceroughnessby15%.Therefore,thisstudyprovidesapracticalandeffectivemethodforimprovingthequalityandefficiencyofthecuttingprocessthroughthedigitaltwintechnology.
Insummary,theproposedmethodofpersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelcangreatlyimprovetheefficiencyandaccuracyofthecuttingprocess.Thegeneticalgorithmandneuralnetworktechnologyareeffectivetoolsforoptimizingthepersonalizeddigitaltwinmodel,andthepracticalapplicationresultsdemonstratetheeffectivenessandfeasibilityoftheproposedmethod.ThisstudyprovidesanewinsightintothedigitaltwintechnologyandoffersguidancefortheoptimizationofmanufacturingprocessesInadditiontotheoptimizationofthecuttingprocess,thedigitaltwintechnologycanalsobeappliedinvariousothermanufacturingprocesses.Forexample,inthefieldof3Dprinting,adigitaltwinmodelcanhelppredictthequalityoftheprintedproductsandoptimizetheprintingparameters.Thiscangreatlyreducethetrial-and-errorprocessandimprovetheefficiencyofthe3Dprintingprocess.
Moreover,thedigitaltwintechnologycanalsobeintegratedwithotheradvancedtechnologiessuchastheInternetofThings(IoT)andbigdataanalyticstoenablereal-timemonitoringanddecision-making.Forinstance,inasmartfactory,thedigitaltwinmodelcaninteractwiththephysicalmanufacturingprocessandcollectdataonvariousaspectssuchastemperature,pressure,andvibration.Thisdatacanbeanalyzedinreal-timeusingmachinelearningalgorithmstodetectanomalies,predictfailures,andoptimizethemanufacturingprocess.
Inconclusion,thedigitaltwintechnologyhasthepotentialtorevolutionizethemanufacturingindustrybyenablingvirtualsimulation,optimization,andreal-timemonitoringofthemanufacturingprocesses.Thepersonalizeddigitaltwinmodelproposedinthisstudyshowcasestheeffectivenessofthegeneticalgorithmandneuralnetworktechnologyinoptimizingthecuttingprocess.FutureresearchcanexploretheapplicationofthedigitaltwintechnologyinothermanufacturingprocessesandintegrateitwithotheradvancedtechnologiesformorecomprehensiveandefficientmanufacturingsolutionsInadditiontothepotentialapplicationinoptimizingcuttingprocesses,personalizeddigitaltwinscanalsobeappliedtoothermanufacturingprocessessuchascasting,forging,andwelding.Theseprocessescanalsobenefitfromvirtualsimulation,optimization,andreal-timemonitoringtoimproveefficiencyandproductquality.
Furthermore,theintegrationofdigitaltwintechnologywithotheradvancedtechnologiescanenhancemanufacturingsolutions.Forinstance,combiningdigitaltwintechnologywithIoT(InternetofThings)sensorscanprovidereal-timedataonthemanufacturingenvironmentandequipment,enablingcontinuousoptimizationofthemanufacturingprocess.Additionally,theintegrationof(ArtificialIntelligence)andML(MachineLearning)technologycanoptimizemanufacturingprocessesbyanalyzingvastamountsofdatacollectedfromthemanufacturingenvironment,identifyingpatterns,andmakingpredictions.
Thebenefitsofdigitaltwintechnologyarenotlimitedtomanufacturingprocesses.Digitaltwinscanalsobeutilizedinotherindustriessuchashealthcare,auto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代企業(yè)年度報告的策劃與制作
- 《釘子板上的多邊形》(說課稿)-2024-2025學(xué)年五年級上冊數(shù)學(xué)蘇教版
- 《Module 7 Unit 2 This little girl can't walk.》(說課稿)-2024-2025學(xué)年外研版(三起)英語五年級上冊
- Unit 2 My week Part B Lets talk Lets learn大單元整體說課稿表格式-2024-2025學(xué)年人教PEP版英語五年級上冊
- 《計算機應(yīng)用基礎(chǔ)》課程思政說課稿六
- 《第二單元 植物的生活:5 植物的“身體”》說課稿-2024-2025學(xué)年青島版科學(xué)三年級上冊
- 2023六年級數(shù)學(xué)上冊 四 圓的周長和面積 1圓的周長說課稿 冀教版
- 2024-2025學(xué)年高中地理 第四章 工業(yè)地域的形成與發(fā)展 第2節(jié) 工業(yè)地域的形成與發(fā)展說課稿 新人教版必修2
- 2025年度森林資源苗木養(yǎng)護與保護合作協(xié)議
- 二零二五年度土地使用權(quán)出讓合同主體變更及土地規(guī)劃調(diào)整協(xié)議
- 電網(wǎng)工程設(shè)備材料信息參考價(2024年第四季度)
- 2025年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025江蘇連云港市贛榆城市建設(shè)發(fā)展集團限公司招聘工作人員15人高頻重點提升(共500題)附帶答案詳解
- 江蘇省揚州市蔣王小學(xué)2023~2024年五年級上學(xué)期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 《港珠澳大橋演講》課件
- 《有機化學(xué)》課件-第十章 羧酸及其衍生物
- 人教版道德與法治五年級下冊《第一單元 我們一家人》大單元整體教學(xué)設(shè)計2022課標(biāo)
- 2024年海南公務(wù)員考試申論試題(A卷)
- 中醫(yī)培訓(xùn)課件:《經(jīng)穴推拿術(shù)》
評論
0/150
提交評論