2023年湖南省新課標數(shù)學高一第二學期期末綜合測試試題含解析_第1頁
2023年湖南省新課標數(shù)學高一第二學期期末綜合測試試題含解析_第2頁
2023年湖南省新課標數(shù)學高一第二學期期末綜合測試試題含解析_第3頁
2023年湖南省新課標數(shù)學高一第二學期期末綜合測試試題含解析_第4頁
2023年湖南省新課標數(shù)學高一第二學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.半徑為,中心角為的弧長為()A. B. C. D.2.圓與直線的位置關系為()A.相離 B.相切C.相交 D.以上都有可能3.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,則互斥而不對立的兩個事件是()A.恰有1個黑球與恰有2個黑球 B.至少有一個紅球與都是黑球C.至少有一個黑球與至少有1個紅球 D.至少有一個黑球與都是黑球4.函數(shù)y=sin2x的圖象可由函數(shù)A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π65.在的二面角內(nèi),放置一個半徑為3的球,該球切二面角的兩個半平面于A,B兩點,那么這兩個切點在球面上的最短距離為()A. B. C. D.6.設等比數(shù)列的公比,前n項和為,則()A.2 B.4 C. D.7.已知,則下列4個角中與角終邊相同的是()A. B. C. D.8.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.9.已知某7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的方差為()A. B.3 C. D.410.設函數(shù)的圖象為,則下列結(jié)論正確的是()A.函數(shù)的最小正周期是B.圖象關于直線對稱C.圖象可由函數(shù)的圖象向左平移個單位長度得到D.函數(shù)在區(qū)間上是增函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則________12.設等差數(shù)列的前項和為,若,,則的最小值為______.13.用列舉法表示集合__________.14.已知的圓心角所對的弧長等于,則該圓的半徑為______.15.已知函數(shù)分別由下表給出:123211123321則當時,_____________.16.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,,.(1)求角B的大??;(2)的面積,求的邊BC的長.18.如圖,在四棱錐中,平面平面,四邊形為矩形,,點,分別是,的中點.求證:(1)直線∥平面;(2)平面平面.19.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計劃在該空地上征地建一個矩形的花壇和一個等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設,征地面積為,求的表達式,并寫出定義域;(2)當滿足取得最大值時,建造效果最美觀.試求的最大值,以及相應角的值.20.已知,,,且.(1)若,求的值;(2)設,,若的最大值為,求實數(shù)的值.21.已知函數(shù)的最小正周期是.(1)求的值及函數(shù)的單調(diào)遞減區(qū)間;(2)當時,求函數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)弧長公式,即可求得結(jié)果.【詳解】,.故選D.【點睛】本題考查了弧長公式,屬于基礎題型.2、C【解析】

由直線方程可確定其恒過的定點,由點與圓的位置關系的判定方法知該定點在圓內(nèi),則可知直線與圓相交.【詳解】由得:直線恒過點在圓內(nèi)部直線與圓相交故選:【點睛】本題考查直線與圓位置關系的判定,涉及到直線恒過定點的求解、點與圓的位置關系的判定,屬于??碱}型.3、A【解析】

從裝有2個紅球和2個黑球的口袋中任取2個球,包括3種情況:①恰有一個黑球,②恰有兩個黑球,③沒有黑球.

故恰有一個黑球與恰有兩個黑球不可能同時發(fā)生,它們是互斥事件,再由這兩件事的和不是必然事件,故他們是互斥但不對立的事件,

故選:A.4、B【解析】

直接利用函數(shù)圖象平移規(guī)律得解.【詳解】函數(shù)y=sin2x-π可得函數(shù)y=sin整理得:y=故選:B【點睛】本題主要考查了函數(shù)圖象平移規(guī)律,屬于基礎題。5、A【解析】

根據(jù)題意,作出截面圖,計算弧長即可.【詳解】根據(jù)題意,作出該球過球心且經(jīng)過A、B的截面圖如下所示:由題可知:則,故滿足題意的最短距離為弧長BA,在該弧所在的扇形中,弧長.故選:A.【點睛】本題考查弧長的計算公式,二面角的定義,屬綜合基礎題.6、D【解析】

設首項為,利用等比數(shù)列的求和公式與通項公式求解即可.【詳解】設首項為,因為等比數(shù)列的公比,所以,故選:D.【點睛】本題主要考查等比數(shù)列的求和公式與通項公式,熟練掌握基本公式是解題的關鍵,屬于基礎題.7、C【解析】

先寫出與角終邊相同的角的集合,再給k取值得解.【詳解】由題得與角終邊相同的集合為,當k=6時,.所以與角終邊相同的角為.故選C【點睛】本題主要考查終邊相同的角的求法,意在考查學生對該知識的理解掌握水平.8、C【解析】

利用余弦定理求三角形的一個內(nèi)角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應用,其中解答中根據(jù)題設條件,合理利用余弦定理求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、C【解析】

由平均數(shù)公式求得原有7個數(shù)的和,可得新的8個數(shù)的平均數(shù),由于新均值和原均值相等,因此由方差公式可得新方差.【詳解】因為7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的平均數(shù)為,方差為,由平均數(shù)和方差的計算公式可得,.故選:C.【點睛】本題考查均值與方差的概念,掌握均值與方差的計算公式是解題關鍵.10、B【解析】

利用函數(shù)的周期判斷A的正誤;通過x=函數(shù)是否取得最值判斷B的正誤;利用函數(shù)的圖象的平移判斷C的正誤,利用函數(shù)的單調(diào)區(qū)間判斷D的正誤.【詳解】對于A,f(x)的最小正周期為π,判斷A錯誤;對于B,當x=,函數(shù)f(x)=sin(2×+)=1,∴選項B正確;對于C,把的圖象向左平移個單位,得到函數(shù)sin[2(x+)]=sin(2x+,∴選項C不正確.對于D,由,可得,k∈Z,所以在上不恒為增函數(shù),∴選項D錯誤;故選B.【點睛】本題考查三角函數(shù)的基本性質(zhì)的應用,函數(shù)的單調(diào)性、周期性及函數(shù)圖象變換,屬于基本知識的考查.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應用,屬于基礎題.12、【解析】

用基本量法求出數(shù)列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數(shù)列的前項和的最值.首項為負且遞增的等差數(shù)列,滿足的最大的使得最小,首項為正且遞減的等差數(shù)列,滿足的最大的使得最大,當然也可把表示為的二次函數(shù),由二次函數(shù)知識求得最值.13、【解析】

先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因為,所以,又因為,所以,此時或,則可得集合:.【點睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.14、【解析】

先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點睛】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.15、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關鍵,屬于基礎題.16、10【解析】

根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由條件可,展開計算代入,即可得;(2)先利用正弦定理求出,再利用面積可得,解方程可得,再利用余弦定理可求得邊BC的長.【詳解】解:(1)在中,,則,即,整理得,又,,(2)由正弦定理得,又,即,所以,,解得,即.【點睛】本題考查了正弦定理,余弦定理的應用,考查了面積公式,是基礎題.18、(1)見解析(2)見解析【解析】

(1)取中點,連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)取中點,連接,.在中,,分別為,中點,則且,又四邊形為矩形,為中點,且,所以,故四邊形為平行四邊形,從而,又,,所以直線.(2)因為矩形,所以,又平面,面,,所以,又,則,又,,所以,又,所以平面平面.【點睛】本題考查線面位置關系的判定與證明,熟練掌握空間中線面位置關系的定義、判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1)(2)最大值為,此時【解析】

(1)連接,在中,求出,進而求出面積以及角的范圍;(2)令,再求出的范圍,轉(zhuǎn)化為二次函數(shù)即可求出最大值,以及相應角的值.【詳解】(1)連接,在中,,(2),令,因為,所以,所以因為在上單調(diào)遞增,所以時有最大值為,此時【點睛】本題主要考查三角函數(shù)與實際應用相結(jié)合,最終轉(zhuǎn)化為二次函數(shù)進行求解,這類問題的特點是通過現(xiàn)實生活的事例考查解決問題的能力、仔細理解題,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.20、(1)0(2)【解析】

(1)通過可以算出,移項、兩邊平方即可算出結(jié)果.(2)通過向量的運算,解出,再通過最大值根的分布,求出的值.【詳解】(1)通過可以算出,即故答案為0.(2),設,,,即的最大值為;①當時,(滿足條件);②當時,(舍);③當時,(舍)故答案為【點睛】當式子中同時出現(xiàn)時,常??梢岳脫Q元法,把用進行表示,但計算過程中也要注意自變量的取值范圍;二次函數(shù)最值一定要注意對稱軸是否在規(guī)定區(qū)間范

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論