




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
深度梯度提升模型及其在腦卒中預測中的應用摘要
隨著數(shù)據(jù)量的增加,提升算法已經(jīng)成為了機器學習中的一大研究熱點。其中,梯度提升模型(GradientBoostingMachine,GBM)是一種常見的提升算法。但是,標準的GBM對于深度神經(jīng)網(wǎng)絡的非線性建模能力較弱,為了克服這一缺陷,研究人員發(fā)展出了深度梯度提升模型(DeepGradientBoostingMachine,DGBM)。
本研究主要使用深度梯度提升模型,對腦卒中的預測建模。通過仿真實驗的結(jié)果表明,與傳統(tǒng)提升算法和神經(jīng)網(wǎng)絡算法相比,DGBM具有更好的預測性能,可以更好地發(fā)現(xiàn)腦卒中的相關風險因素。
通過實驗,我們發(fā)現(xiàn)DGBM具有較強的自適應擬合能力,可以自動學習輸入變量的重要性,提升數(shù)據(jù)的處理效率。此外,相對于傳統(tǒng)的機器學習算法,DGBM對數(shù)據(jù)的連續(xù)性要求較低,具有更廣泛的應用范圍。
關鍵詞:深度梯度提升模型;腦卒中預測;自適應擬合;風險因素;數(shù)據(jù)處理
Abstract
Withtheincreaseofdatavolume,boostingalgorithmshavebecomeahotresearchtopicinmachinelearning.Amongthem,GradientBoostingMachine(GBM)isacommonboostingalgorithm.However,thestandardGBMhasweaknonlinearmodelingabilityfordeepneuralnetworks.Toovercomethisshortcoming,researchershavedevelopedDeepGradientBoostingMachine(DGBM).
Inthisstudy,wemainlyusetheDeepGradientBoostingMachinetomodelthepredictionofstroke.Theresultsofsimulationexperimentsshowthatcomparedwithtraditionalboostingalgorithmsandneuralnetworkalgorithms,DGBMhasbetterpredictionperformanceandcanbetterdiscoverrelevantriskfactorsforstroke.
Throughexperiments,wefoundthatDGBMhasstrongadaptivefittingability,canautomaticallylearntheimportanceofinputvariables,andimprovetheefficiencyofdataprocessing.Inaddition,comparedwithtraditionalmachinelearningalgorithms,DGBMhasalowerrequirementfordatacontinuityandhasawiderrangeofapplications.
Keywords:DeepGradientBoostingMachine;StrokePrediction;AdaptiveFitting;RiskFactors;DataProcessingStrokeisamajorhealthconcernandaleadingcauseofdisabilityanddeathglobally.Riskfactorsforstrokecanbebroadlygroupedintotwocategories,modifiableandnon-modifiable.Non-modifiableriskfactorsincludeage,gender,genetics,andfamilyhistory.However,modifiableriskfactorsplayasignificantroleinthepreventionofstroke.
Themodifiableriskfactorsforstrokeincludehighbloodpressure,smoking,diabetes,highcholesterol,obesity,physicalinactivity,unhealthydiet,andexcessivealcoholconsumption.Theseriskfactorsincreasethelikelihoodofdevelopingatherosclerosis,whichisthehardeningandnarrowingofthearteries,andcanleadtostroke.
Highbloodpressureisthemostimportantmodifiableriskfactorforstroke.Itdamagesthebloodvessels,makingthemmorepronetoblockageorrupture,leadingtostroke.Smokingincreasestheriskofstrokebydamagingthebloodvesselsandincreasingtheformationofbloodclots.Diabetesincreasestheriskofstrokebydamagingthebloodvesselsandincreasingthelikelihoodofbloodclotsformation.
Highcholesterollevelscontributetotheformationofatherosclerosisandincreasestheriskofstroke.Obesity,physicalinactivity,andunhealthydietscontributetothedevelopmentofatherosclerosisandincreasetheriskofstroke.Excessivealcoholconsumptioncontributestohighbloodpressureandincreasestheriskofstroke.
Inconclusion,identifyingmodifiableriskfactorsforstrokeiscriticalinthepreventionandmanagementofstroke.TheDeepGradientBoostingMachine(DGBM)hasemergedasapowerfultoolinpredictingtheriskofstrokeandidentifyingrelevantriskfactors.Itsadaptivefittingability,automaticlearningofinputvariableimportance,andwiderangeofapplicationsmakeitaneffectiveoptionfordataprocessinginstrokepredictionFurthermore,besidesthetraditionalriskfactorsforstrokesuchashypertension,diabetes,andsmoking,emergingriskfactorssuchasairpollutionandsleepapneahavegainedattentioninrecentyears.Airpollutionhasbeenfoundtoincreasetheriskofstrokebypromotinginflammationandoxidativestress,whilesleepapnea,acommonbreathingdisorderduringsleep,isassociatedwithanincreasedriskofstrokeduetodisruptedoxygensupplytothebrain.
Itisalsoworthnotingthatstrokepreventionandmanagementrequireamultidisciplinaryapproachinvolvingnotonlymedicalprofessionalsbutalsopatients,families,andcommunities.Patienteducationandlifestylemodificationprograms,suchasregularexercise,healthyeating,andstressreduction,cancomplementmedicaltreatmentsandreducetheriskofstroke.
Inconclusion,strokeisamajorpublichealthissueworldwide,withahighburdenofmortalityanddisability.Whilethetraditionalriskfactorsforstrokeremainsignificant,newriskfactorshaveemerged,anddataprocessingtoolssuchasDGBMcanaidintheiridentificationandmanagement.Collaborativeeffortsamonghealthcareprofessionals,patients,families,andcommunitiesarenecessarytopreventandmanagestrokeeffectivelyStrokeisacomplexandheterogeneousdiseasewithahighburdenofmortalityanddisability.Itrequiresamultidisciplinaryapproachtoitsmanagement,includingprimaryprevention,acutetreatment,andrehabilitation.Whiletherehavebeensignificantadvancementsinstrokeresearchandtreatment,thereisstillmuchworktobedonetoeffectivelypreventandmanagestroke.
Oneareaofresearchthatshowspromiseisthedevelopmentofnovelbiomarkersforstroke.Biomarkersaremeasurableindicatorsofabiologicalstateorprocessandcanprovidevaluableinformationontheunderlyingmechanismsofstroke.Forexample,certainproteinsinthebloodorcerebrospinalfluidmayindicateinflammation,oxidativestress,orvascularinjury,allofwhichareknowntocontributetostrokedevelopmentandprogression.
Anotherareaofresearchthatholdspromiseistheuseoftelestrokeandtelemedicinetechnologiestoimprovestrokecareinunderservedorremoteareas.Telestrokeinvolvestheuseofvideoconferencingandtelecommunicationstechnologiestoconnectstrokespecialistswithpatientsandhealthcareprovidersinremotelocations.Thisenablestimelydiagnosis,treatment,andtransferofpatients,improvingoutcomesandreducingtheburdenonlocalhealthcarefacilities.
Finally,strokepreventionremainsacrucialaspectofstrokemanagement.Whiletraditionalriskfactorssuchashypertension,diabetes,andsmokingremainsignificant,newriskfactorssuchasairpollutionandpoorsleepqualityhaveemer
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【復習大串講】【中職專用】高二語文上學期期末綜合測試題(三)(職業(yè)模塊)(原卷版)
- 單位員工招聘合同范本
- 獸醫(yī)聘用勞務合同范本
- 光催化課題申報書
- 會所物資出售合同范本
- 廚具采買合同范本寫
- 吊裝合同范例簡易版本
- 醫(yī)院雇傭合同范本
- 企業(yè)各類合同范本
- 吊車及場地合作合同范本
- 無痛胃腸鏡的護理查房
- 農(nóng)村生活污水檢測服務方案
- 中華人民共和國傳染病防治法-李碩娟 陳桂云
- 熱力管網(wǎng)運行工施工工序標準詳細流程培訓
- 智慧農(nóng)場整體建設實施方案
- 駕駛員心理健康與安全駕駛
- 基于強化學習的特征選擇技術(shù)
- 灌入式半柔性復合抗車轍路面施工工法
- 小班第一學期教學進度表
- 材料性能學課件:材料的熱學性能-2-熱傳導-熱穩(wěn)定性-
- 幼兒園優(yōu)質(zhì)公開課:中班數(shù)學《尋寶小勇士》課件
評論
0/150
提交評論