深井開采地表移動變形響應時空關聯(lián)模型研究及應用_第1頁
深井開采地表移動變形響應時空關聯(lián)模型研究及應用_第2頁
深井開采地表移動變形響應時空關聯(lián)模型研究及應用_第3頁
深井開采地表移動變形響應時空關聯(lián)模型研究及應用_第4頁
深井開采地表移動變形響應時空關聯(lián)模型研究及應用_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

深井開采地表移動變形響應時空關聯(lián)模型研究及應用摘要

我國深井開采地表移動變形響應時空關聯(lián)研究成為了當前的熱點問題之一。本文提出了一種新的深井開采地表移動變形響應時空關聯(lián)模型,該模型基于深井開采巖體的動態(tài)變形學理論和地表移動監(jiān)測數(shù)據(jù),并充分考慮與地下煤層開采工程的關聯(lián)。本文首先從地表監(jiān)測數(shù)據(jù)的采集和處理方法入手,結合神經(jīng)網(wǎng)絡和貝葉斯網(wǎng)絡等分析方法,分析了觀測數(shù)據(jù)的特點,提出了一種對數(shù)據(jù)進行預處理和異常檢測的算法。其次,以深井開采為例,對深井開采中地表的變形機理進行了分析,總結了深井開采地表變形的主要因素,建立了深井開采地表移動變形模型,同時計算和預測了地表形變的程度和分布規(guī)律。最后,以實際深井開采工程為例,應用了本文提出的模型,獲得了可信的預測結果,并驗證了模型的有效性和可靠性。

關鍵詞:深井開采;地表移動;時空關聯(lián);神經(jīng)網(wǎng)絡;貝葉斯網(wǎng)絡

Abstract

ThestudyofthespatialandtemporalcorrelationbetweensurfacemovementdeformationanddeepcoalmininginChinahasbecomeoneofthecurrenthotresearchtopics.Inthispaper,anewmodelforthecorrelationbetweendeepcoalminingandsurfacemovementdeformationisproposedbasedonthedynamicdeformationtheoryoftheminingrockmassandsurfacemonitoringdata,takingintoaccountthecorrelationwiththeundergroundcoalminingengineering.Firstly,startingfromtheacquisitionandprocessingmethodsofsurfacemonitoringdata,combinedwithanalysismethodssuchasneuralnetworkandBayesiannetwork,thecharacteristicsoftheobservationdatawereanalyzed,andanalgorithmwasproposedtopreprocessanddetectanomaliesofthedata.Secondly,takingdeepcoalminingasanexample,thedeformationmechanismofsurfaceindeepcoalminingwasanalyzed,themainfactorsofsurfacedeformationindeepcoalminingweresummarized,themodelofsurfacemovementdeformationindeepcoalminingwasestablished,andthedegreeanddistributionlawofsurfacedeformationwerecalculatedandpredicted.Finally,takinganactualdeepcoalminingprojectasanexample,themodelproposedinthispaperwasappliedtoobtainreliablepredictionresults,andtheeffectivenessandreliabilityofthemodelwereverified.

Keywords:deepcoalmining;surfacemovement;spatialandtemporalcorrelation;neuralnetwork;BayesiannetworkDeepcoalminingisanessentialbutchallengingtaskduetothepotentialriskofsurfacemovementdeformation.Accuratepredictionofsurfacedeformationiscrucialinensuringthesafetyandstabilityofminingoperations.Inthiscontext,thispaperpresentsanovelapproachtopredictsurfacemovementdeformationindeepcoalmining.

Theproposedapproachconsidersthespatialandtemporalcorrelationsamongdifferentfactorsthataffectsurfacedeformation,suchasminingdepth,miningtime,geologicalcharacteristics,andminingmethod.AneuralnetworkandaBayesiannetworkareusedtomodelthecomplexrelationshipsbetweenthesefactorsandsurfacedeformation.Theneuralnetworkisusedtocapturethenonlinearrelationshipsbetweenthefactors,whiletheBayesiannetworkisusedtointegratepriorknowledgeanduncertainty.

Tovalidatetheproposedapproach,acasestudywasconductedusingdatafromanactualdeepcoalminingproject.Theresultsshowthattheproposedapproachcaneffectivelypredictsurfacedeformationwithhighaccuracy,andthepredictedvaluesareconsistentwiththeactualobserveddata.Moreover,theproposedapproachcanidentifythekeyfactorsthatcontributetosurfacedeformation,whichcanhelpminingengineerstooptimizeminingoperationsandminimizetheriskofdeformation.

Inconclusion,theproposedapproachprovidesareliableandeffectivemethodforpredictingsurfacemovementdeformationindeepcoalmining.Ittakesintoaccountthespatialandtemporalcorrelationsbetweenvariousfactors,andintegratestheadvantagesofneuralnetworkandBayesiannetwork.ThisapproachcanhelpminingengineersmakeinformeddecisionsandimprovethesafetyandstabilityofminingoperationsMoreover,theproposedapproachcanalsobeappliedtoothertypesofminingoperationssuchasmetalandnon-metalmining.Ithasthepotentialtoimprovethesafetyandefficiencyofminingoperationsbyidentifyingpotentialsurfacemovementdeformationissuesinadvance,whichcanpreventaccidentsandreduceminingcosts.Furthermore,thisapproachcanalsoassistinthedevelopmentofnewminingmethodsthatarelesslikelytocausesurfacedeformation,therebypromotingsustainableminingpractices.

Inadditiontothetechnicalbenefits,theproposedapproachcanalsoprovidesignificanteconomicbenefitsforminingcompanies.Surfacedeformationcancausedamagetoinfrastructureorpropertyandcanresultincostlycompensationclaims.Bypredictingsurfacemovementdeformationandtakingproactivemeasurestopreventit,miningcompaniescanavoidthesecostsandimprovetheirbottomline.

However,therearepotentialchallengesinimplementingthisapproachinreal-worldminingoperations.Oneofthechallengesistheavailabilityandqualityofdata.Miningdataisoftencollectedinafragmentedandinconsistentmanner,whichcanbeabarriertoaccurateprediction.Anotherchallengeistheneedforminingcompaniestoinvestinnewtechnologiesandtrainingtoimplementtheapproacheffectively.

Despitethesechallenges,theproposedapproachhasthepotentialtotransformtheminingindustrybyimprovingsafety,efficiency,andsustainability.Withincreasingpressureonminingcompaniestominimizetheirenvironmentalimpactandmaintainthesafetyoftheirworkers,theadoptionofthisapproachcouldbeacriticalsteptoachievingthesegoals.

Insummary,theproposedapproachforpredictingsurfacemovementdeformationindeepcoalminingcanprovidesignificantbenefitsfortheminingindustry.Itcanimprovesafety,efficiency,andsustainability,whilereducingcostsandpreventingaccidents.Whileimplementingthisapproachmayhavesomechallenges,itspotentialbenefitsmakeitworthpursuingfurther.MiningcompaniesthatembracethisapproachcangainacompetitiveadvantagebyenhancingtheiroperationsandminimizingtheirenvironmentalimpactOnechallengeinimplementingthisapproachmaybetheinitialcostofsettingupthemonitoringsystemsandequipment.However,thiscostcanbepartiallyoffsetbythelong-termbenefitsofincreasedsafety,efficiency,andreducedcosts.Additionally,miningcompaniescanseekpartnershipswithacademicinstitutionsandresearchorganizationstodevelopandrefinethetechnology,reducingthecostsandrisksinvolvedintheimplementationprocess.

Anotherchallengemaybetheneedforspecializedskillstooperateandinterpretthedatafromthemonitoringsystems.Trainingprogramscanbedevelopedtoequipemployeeswiththenecessaryskillsandknowledge,whilealsopromotinginnovationandknowledge-sharingwithintheindustry.

Finally,itisimportanttoensurethattheimplementationofmonitoringsystemsandtheuseofpredictiveanalyticsdonotreplacehumandecision-makingandsituationalawarenessinminingoperations.Rather,thesetoolsshouldbeusedtocomplementandenhancethecapabilitiesofhumanoperators,providingthemwithvaluableinformationandinsightstomakeinformeddecisionsandmaintainasafeandefficientworkingenvironment.

Inconclusion,theimplementationofpredictiveanalyticsforsurfacemovementdeformationindeepcoalmininghasthepotentialtorevolutionizetheminingindustry,improvingsafety,efficiency,andsustainabilitywhilereducingcostsandaccidents.Whiletheremaybesomechallengesinvolvedintheimplementationprocess,thebenefitsmakeitaworthwhilepursui

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論