深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用_第1頁
深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用_第2頁
深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用_第3頁
深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用_第4頁
深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型研究及應(yīng)用摘要

我國深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)研究成為了當(dāng)前的熱點問題之一。本文提出了一種新的深井開采地表移動變形響應(yīng)時空關(guān)聯(lián)模型,該模型基于深井開采巖體的動態(tài)變形學(xué)理論和地表移動監(jiān)測數(shù)據(jù),并充分考慮與地下煤層開采工程的關(guān)聯(lián)。本文首先從地表監(jiān)測數(shù)據(jù)的采集和處理方法入手,結(jié)合神經(jīng)網(wǎng)絡(luò)和貝葉斯網(wǎng)絡(luò)等分析方法,分析了觀測數(shù)據(jù)的特點,提出了一種對數(shù)據(jù)進行預(yù)處理和異常檢測的算法。其次,以深井開采為例,對深井開采中地表的變形機理進行了分析,總結(jié)了深井開采地表變形的主要因素,建立了深井開采地表移動變形模型,同時計算和預(yù)測了地表形變的程度和分布規(guī)律。最后,以實際深井開采工程為例,應(yīng)用了本文提出的模型,獲得了可信的預(yù)測結(jié)果,并驗證了模型的有效性和可靠性。

關(guān)鍵詞:深井開采;地表移動;時空關(guān)聯(lián);神經(jīng)網(wǎng)絡(luò);貝葉斯網(wǎng)絡(luò)

Abstract

ThestudyofthespatialandtemporalcorrelationbetweensurfacemovementdeformationanddeepcoalmininginChinahasbecomeoneofthecurrenthotresearchtopics.Inthispaper,anewmodelforthecorrelationbetweendeepcoalminingandsurfacemovementdeformationisproposedbasedonthedynamicdeformationtheoryoftheminingrockmassandsurfacemonitoringdata,takingintoaccountthecorrelationwiththeundergroundcoalminingengineering.Firstly,startingfromtheacquisitionandprocessingmethodsofsurfacemonitoringdata,combinedwithanalysismethodssuchasneuralnetworkandBayesiannetwork,thecharacteristicsoftheobservationdatawereanalyzed,andanalgorithmwasproposedtopreprocessanddetectanomaliesofthedata.Secondly,takingdeepcoalminingasanexample,thedeformationmechanismofsurfaceindeepcoalminingwasanalyzed,themainfactorsofsurfacedeformationindeepcoalminingweresummarized,themodelofsurfacemovementdeformationindeepcoalminingwasestablished,andthedegreeanddistributionlawofsurfacedeformationwerecalculatedandpredicted.Finally,takinganactualdeepcoalminingprojectasanexample,themodelproposedinthispaperwasappliedtoobtainreliablepredictionresults,andtheeffectivenessandreliabilityofthemodelwereverified.

Keywords:deepcoalmining;surfacemovement;spatialandtemporalcorrelation;neuralnetwork;BayesiannetworkDeepcoalminingisanessentialbutchallengingtaskduetothepotentialriskofsurfacemovementdeformation.Accuratepredictionofsurfacedeformationiscrucialinensuringthesafetyandstabilityofminingoperations.Inthiscontext,thispaperpresentsanovelapproachtopredictsurfacemovementdeformationindeepcoalmining.

Theproposedapproachconsidersthespatialandtemporalcorrelationsamongdifferentfactorsthataffectsurfacedeformation,suchasminingdepth,miningtime,geologicalcharacteristics,andminingmethod.AneuralnetworkandaBayesiannetworkareusedtomodelthecomplexrelationshipsbetweenthesefactorsandsurfacedeformation.Theneuralnetworkisusedtocapturethenonlinearrelationshipsbetweenthefactors,whiletheBayesiannetworkisusedtointegratepriorknowledgeanduncertainty.

Tovalidatetheproposedapproach,acasestudywasconductedusingdatafromanactualdeepcoalminingproject.Theresultsshowthattheproposedapproachcaneffectivelypredictsurfacedeformationwithhighaccuracy,andthepredictedvaluesareconsistentwiththeactualobserveddata.Moreover,theproposedapproachcanidentifythekeyfactorsthatcontributetosurfacedeformation,whichcanhelpminingengineerstooptimizeminingoperationsandminimizetheriskofdeformation.

Inconclusion,theproposedapproachprovidesareliableandeffectivemethodforpredictingsurfacemovementdeformationindeepcoalmining.Ittakesintoaccountthespatialandtemporalcorrelationsbetweenvariousfactors,andintegratestheadvantagesofneuralnetworkandBayesiannetwork.ThisapproachcanhelpminingengineersmakeinformeddecisionsandimprovethesafetyandstabilityofminingoperationsMoreover,theproposedapproachcanalsobeappliedtoothertypesofminingoperationssuchasmetalandnon-metalmining.Ithasthepotentialtoimprovethesafetyandefficiencyofminingoperationsbyidentifyingpotentialsurfacemovementdeformationissuesinadvance,whichcanpreventaccidentsandreduceminingcosts.Furthermore,thisapproachcanalsoassistinthedevelopmentofnewminingmethodsthatarelesslikelytocausesurfacedeformation,therebypromotingsustainableminingpractices.

Inadditiontothetechnicalbenefits,theproposedapproachcanalsoprovidesignificanteconomicbenefitsforminingcompanies.Surfacedeformationcancausedamagetoinfrastructureorpropertyandcanresultincostlycompensationclaims.Bypredictingsurfacemovementdeformationandtakingproactivemeasurestopreventit,miningcompaniescanavoidthesecostsandimprovetheirbottomline.

However,therearepotentialchallengesinimplementingthisapproachinreal-worldminingoperations.Oneofthechallengesistheavailabilityandqualityofdata.Miningdataisoftencollectedinafragmentedandinconsistentmanner,whichcanbeabarriertoaccurateprediction.Anotherchallengeistheneedforminingcompaniestoinvestinnewtechnologiesandtrainingtoimplementtheapproacheffectively.

Despitethesechallenges,theproposedapproachhasthepotentialtotransformtheminingindustrybyimprovingsafety,efficiency,andsustainability.Withincreasingpressureonminingcompaniestominimizetheirenvironmentalimpactandmaintainthesafetyoftheirworkers,theadoptionofthisapproachcouldbeacriticalsteptoachievingthesegoals.

Insummary,theproposedapproachforpredictingsurfacemovementdeformationindeepcoalminingcanprovidesignificantbenefitsfortheminingindustry.Itcanimprovesafety,efficiency,andsustainability,whilereducingcostsandpreventingaccidents.Whileimplementingthisapproachmayhavesomechallenges,itspotentialbenefitsmakeitworthpursuingfurther.MiningcompaniesthatembracethisapproachcangainacompetitiveadvantagebyenhancingtheiroperationsandminimizingtheirenvironmentalimpactOnechallengeinimplementingthisapproachmaybetheinitialcostofsettingupthemonitoringsystemsandequipment.However,thiscostcanbepartiallyoffsetbythelong-termbenefitsofincreasedsafety,efficiency,andreducedcosts.Additionally,miningcompaniescanseekpartnershipswithacademicinstitutionsandresearchorganizationstodevelopandrefinethetechnology,reducingthecostsandrisksinvolvedintheimplementationprocess.

Anotherchallengemaybetheneedforspecializedskillstooperateandinterpretthedatafromthemonitoringsystems.Trainingprogramscanbedevelopedtoequipemployeeswiththenecessaryskillsandknowledge,whilealsopromotinginnovationandknowledge-sharingwithintheindustry.

Finally,itisimportanttoensurethattheimplementationofmonitoringsystemsandtheuseofpredictiveanalyticsdonotreplacehumandecision-makingandsituationalawarenessinminingoperations.Rather,thesetoolsshouldbeusedtocomplementandenhancethecapabilitiesofhumanoperators,providingthemwithvaluableinformationandinsightstomakeinformeddecisionsandmaintainasafeandefficientworkingenvironment.

Inconclusion,theimplementationofpredictiveanalyticsforsurfacemovementdeformationindeepcoalmininghasthepotentialtorevolutionizetheminingindustry,improvingsafety,efficiency,andsustainabilitywhilereducingcostsandaccidents.Whiletheremaybesomechallengesinvolvedintheimplementationprocess,thebenefitsmakeitaworthwhilepursui

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論