版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法摘要:隨著城市化進(jìn)程的加快,機(jī)動車數(shù)量急劇增加,交通擁堵、交通事故頻發(fā)已成為社會面臨的嚴(yán)重問題。為了提高交通運輸安全水平,智能交通系統(tǒng)應(yīng)運而生,并得到了廣泛的研究和應(yīng)用。其中,車輛標(biāo)識識別技術(shù)是智能交通系統(tǒng)中的重要組成部分之一。
本文主要研究智能交通系統(tǒng)中機(jī)動車車標(biāo)識別方法,采用了基于深度神經(jīng)網(wǎng)絡(luò)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法。首先,對機(jī)動車車標(biāo)進(jìn)行了圖像預(yù)處理,包括圖像增強、去噪、二值化等。然后,通過構(gòu)建車標(biāo)圖像數(shù)據(jù)庫,利用CNN算法進(jìn)行特征提取和分類識別,實現(xiàn)了對機(jī)動車車標(biāo)的自動識別。該方法可以有效區(qū)分不同類型的車標(biāo),并且對于光照、角度等因素具有較強的魯棒性。
通過實驗驗證,本文所提出的方法具有較高的識別準(zhǔn)確性和識別速度,可在智能交通系統(tǒng)中實現(xiàn)對機(jī)動車的車標(biāo)識別,具有廣泛的應(yīng)用前景和推廣價值。
關(guān)鍵詞:智能交通系統(tǒng);機(jī)動車;車標(biāo)識別;卷積神經(jīng)網(wǎng)絡(luò);深度學(xué)習(xí)
Abstract:Withtheaccelerationofurbanization,thenumberofvehicleshasincreaseddramatically,andtrafficcongestionandaccidentshavebecomeseriousproblemsfacedbysociety.Inordertoimprovetheleveloftransportationsafety,theintelligenttransportationsystemhasemergedandhasbeenwidelystudiedandapplied.amongthem,theidentificationtechnologyofvehicleidentificationisoneoftheimportantcomponentsintheintelligenttransportationsystem.
Thispapermainlystudiestheidentificationmethodofmotorvehiclelogointheintelligenttransportationsystem,whichadoptstheconvolutionalneuralnetwork(CNN)basedondeepneuralnetwork.Firstly,thevehiclelogoimageispreprocessed,includingimageenhancement,noisereduction,binarization,etc.Then,throughtheconstructionofthevehiclelogoimagedatabase,thefeatureextractionandclassificationrecognitionarerealizedbyusingCNNalgorithm,andtheautomaticrecognitionofthevehiclelogoisrealized.Thismethodcaneffectivelydistinguishdifferenttypesofvehiclelogos,andhasstrongrobustnessforfactorssuchasilluminationandangle.
Throughexperimentalverification,themethodproposedinthispaperhashighrecognitionaccuracyandrecognitionspeed,andcanrealizethelogorecognitionofmotorvehiclesintheintelligenttransportationsystem,whichhasbroadapplicationprospectsandpromotionvalue.
Keywords:intelligenttransportationsystem;motorvehicle;logorecognition;convolutionalneuralnetwork;deeplearningWiththedevelopmentofintelligenttransportationsystems,motorvehiclelogorecognitionhasbecomeanimportantresearchtopicinrecentyears.Thetraditionallogorecognitionmethodbasedonimageprocessingtechnologyhassomelimitations,suchaslowrecognitionrateanddifficulttoadapttocomplexenvironments.
Inthispaper,anewlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologywasproposed.Firstly,adatasetofmotorvehiclelogoswasconstructed,andtherawdatawaspreprocessedtoenhancetheimagequality.Then,aconvolutionalneuralnetworkmodelwasdesignedandtrainedusingthedataset.Themodelwasoptimizedbyadjustingthehyperparametersandusingthetransferlearningmethod.Finally,thetrainedmodelwasusedtoidentifylogosinreal-time.
Experimentalresultsshowedthattheproposedmethodachievedhighrecognitionaccuracyandfastrecognitionspeed.Itcaneffectivelyrecognizelogosfromimagescapturedunderdifferentilluminationandangleconditions.Inaddition,themethodisscalableandcanbeappliedtoalargenumberoflogorecognitiontasksinintelligenttransportationsystems.
Inconclusion,theproposedlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologyhasgreatpotentialforapplicationinintelligenttransportationsystems.Itprovidesaneffectivesolutionforautomaticlogorecognition,whichcanimprovetheefficiencyandqualityoftrafficmanagementandreducetherisksoftrafficaccidents.Themethodcanalsobeextendedtootherfields,suchasproductrecognition,facerecognition,andobjectdetectionAdditionally,theuseofdeeplearningforlogorecognitionhasthepotentialtorevolutionizethewaybusinessesoperatebyallowingfortheautomationoftasksthatpreviouslyrequiredhumanintervention.Thisincludestaskssuchasmonitoringproductplacementinstores,trackingbrandexposureinmedia,andidentifyingcounterfeitproducts.Thepossibilitiesforimprovedefficiencyandaccuracyintheseareasareendlesswiththeuseofdeeplearningforlogorecognition.
Furthermore,thealgorithmusedinthislogorecognitionmethodcanbecontinuouslyimprovedthroughtheuseoflargerandmorediversedatasets.Astheamountofdataavailablefortrainingincreases,thenetwork'sabilitytoaccuratelyrecognizelogoswillimprove.Thismeansthatthepotentialapplicationsofthistechnologywillonlycontinuetoexpandasmoredatabecomesavailable.
Inconclusion,deeplearning-basedlogorecognitionhasthepotentialtogreatlyimprovevariousaspectsofourdailylivesfromtrafficmanagementtobusinessoperations.Asthetechnologycontinuestoevolveandimprove,wecanexpecttoseeevenmorepracticalusesforlogorecognitioninthefutureOneofthepotentialapplicationsofdeeplearning-basedlogorecognitionisinadvertisingandmarketing.Advertiserscanusethistechnologytotracktheeffectivenessoftheiradvertisingcampaignsbymeasuringtheimpactofdifferentlogosandbrandelementsonconsumerbehavior.Forexample,theycanuselogorecognitiontotrackhowoftentheiradsareviewedandwhichlogosaremosteffectiveatdrivingsales.
Anotherpotentialuseforthistechnologyisinthefieldofsecurity.Deeplearning-basedlogorecognitioncanbeusedtomonitorsecuritycamerasandidentifypotentialthreatsbasedonthelogosthatarecapturedinthefootage.Thiscanhelpsecuritypersonnelrespondtoincidentsmorequicklyandwithgreateraccuracy.
Therearealsoimplicationsforintellectualpropertymanagement.Companiescanuselogorecognitiontomonitortheuseoftheirlogosandtrademarksonline,includingonsocialmediaplatforms.Thiscanhelpthemdetectandpreventtheunauthorizeduseoftheirintellectualproperty,whichcanbeacostlyproblemforbrands.
Furthermore,deeplearning-basedlogorecognitionhasthepotentialtoenhanceaccessibilityforpeoplewithvisualimpairments.Byusingimagerecognitiontechnologytodetectlogosandothervisualcues,applicationscanprovideaudiodescriptionsforpeoplewhomaynotbeabletoseethem.Thiscanmakethecontentmoreaccessibleandhelptocreateamoreinclusivesociety.
Finally,thedevelopmentofdeeplearning-basedlogorecognitionhasthepotentialtocreatenewbusinessopportunitiesinthefieldofartificialintelligence.Asthedemandfordeeplearning-basedapplicationscontinuestogrow,companiesthatspecializeindevelopingandrefiningthealgorithmsandmodelsneededforlogorecognitionwillbewell-positionedtocapitalizeonthistrend.
Overall,deeplearning-basedlogorecognitionhasthepotentialtorevolutionizeawiderangeofindustriesandareasofdailylife.Asthetechnologycontinuestoe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 船閘課程設(shè)計地板計算
- 中醫(yī)執(zhí)業(yè)醫(yī)師考試-中醫(yī)基礎(chǔ)理論練習(xí)題
- 職業(yè)體驗課程設(shè)計與實施
- 藥物新劑型與新技術(shù)課程講稿2
- 藥店銷售活動課程設(shè)計
- 群樁計算 課程設(shè)計
- 自動掃雷課程設(shè)計
- 物業(yè)管理行業(yè)采購工作總結(jié)
- 2024年秋季學(xué)期新人教版地理七年級上冊課件 第三章 陸地和海洋 3.3 海陸的變遷
- 美容美發(fā)行業(yè)前臺接待總結(jié)
- 反思單元 沈括的“海陸變遷”說(習(xí)題教學(xué)設(shè)計)2023-2024學(xué)年三年級上冊科學(xué)(大象版 河南專用)
- 2023-2024屆高考語文復(fù)習(xí)-閱讀與訓(xùn)練主題+工匠精神(含答案)
- 裝表接電培訓(xùn)課件
- 新蘇教版五年級上冊科學(xué)全冊期末復(fù)習(xí)知識點(彩版)
- 部編版小學(xué)一年級上冊道德與法治教學(xué)設(shè)計(第三、第四單元)
- CJJT 164-2011 盾構(gòu)隧道管片質(zhì)量檢測技術(shù)標(biāo)準(zhǔn)
- 2023年甘肅省定西市中考政治真題 (含解析)
- 中醫(yī)科診療指南及技術(shù)操作規(guī)范學(xué)習(xí)試題
- 胃腸減壓的護(hù)理措施要點課件
- 6.2《青紗帳-甘蔗林》教學(xué)設(shè)計-【中職專用】高一語文(高教版2023·基礎(chǔ)模塊下冊)
- 25王戎不取道旁李公開課一等獎創(chuàng)新教學(xué)設(shè)計
評論
0/150
提交評論