智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法_第1頁
智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法_第2頁
智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法_第3頁
智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法_第4頁
智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

智能交通系統(tǒng)機(jī)動車車標(biāo)識別方法摘要:隨著城市化進(jìn)程的加快,機(jī)動車數(shù)量急劇增加,交通擁堵、交通事故頻發(fā)已成為社會面臨的嚴(yán)重問題。為了提高交通運輸安全水平,智能交通系統(tǒng)應(yīng)運而生,并得到了廣泛的研究和應(yīng)用。其中,車輛標(biāo)識識別技術(shù)是智能交通系統(tǒng)中的重要組成部分之一。

本文主要研究智能交通系統(tǒng)中機(jī)動車車標(biāo)識別方法,采用了基于深度神經(jīng)網(wǎng)絡(luò)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法。首先,對機(jī)動車車標(biāo)進(jìn)行了圖像預(yù)處理,包括圖像增強、去噪、二值化等。然后,通過構(gòu)建車標(biāo)圖像數(shù)據(jù)庫,利用CNN算法進(jìn)行特征提取和分類識別,實現(xiàn)了對機(jī)動車車標(biāo)的自動識別。該方法可以有效區(qū)分不同類型的車標(biāo),并且對于光照、角度等因素具有較強的魯棒性。

通過實驗驗證,本文所提出的方法具有較高的識別準(zhǔn)確性和識別速度,可在智能交通系統(tǒng)中實現(xiàn)對機(jī)動車的車標(biāo)識別,具有廣泛的應(yīng)用前景和推廣價值。

關(guān)鍵詞:智能交通系統(tǒng);機(jī)動車;車標(biāo)識別;卷積神經(jīng)網(wǎng)絡(luò);深度學(xué)習(xí)

Abstract:Withtheaccelerationofurbanization,thenumberofvehicleshasincreaseddramatically,andtrafficcongestionandaccidentshavebecomeseriousproblemsfacedbysociety.Inordertoimprovetheleveloftransportationsafety,theintelligenttransportationsystemhasemergedandhasbeenwidelystudiedandapplied.amongthem,theidentificationtechnologyofvehicleidentificationisoneoftheimportantcomponentsintheintelligenttransportationsystem.

Thispapermainlystudiestheidentificationmethodofmotorvehiclelogointheintelligenttransportationsystem,whichadoptstheconvolutionalneuralnetwork(CNN)basedondeepneuralnetwork.Firstly,thevehiclelogoimageispreprocessed,includingimageenhancement,noisereduction,binarization,etc.Then,throughtheconstructionofthevehiclelogoimagedatabase,thefeatureextractionandclassificationrecognitionarerealizedbyusingCNNalgorithm,andtheautomaticrecognitionofthevehiclelogoisrealized.Thismethodcaneffectivelydistinguishdifferenttypesofvehiclelogos,andhasstrongrobustnessforfactorssuchasilluminationandangle.

Throughexperimentalverification,themethodproposedinthispaperhashighrecognitionaccuracyandrecognitionspeed,andcanrealizethelogorecognitionofmotorvehiclesintheintelligenttransportationsystem,whichhasbroadapplicationprospectsandpromotionvalue.

Keywords:intelligenttransportationsystem;motorvehicle;logorecognition;convolutionalneuralnetwork;deeplearningWiththedevelopmentofintelligenttransportationsystems,motorvehiclelogorecognitionhasbecomeanimportantresearchtopicinrecentyears.Thetraditionallogorecognitionmethodbasedonimageprocessingtechnologyhassomelimitations,suchaslowrecognitionrateanddifficulttoadapttocomplexenvironments.

Inthispaper,anewlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologywasproposed.Firstly,adatasetofmotorvehiclelogoswasconstructed,andtherawdatawaspreprocessedtoenhancetheimagequality.Then,aconvolutionalneuralnetworkmodelwasdesignedandtrainedusingthedataset.Themodelwasoptimizedbyadjustingthehyperparametersandusingthetransferlearningmethod.Finally,thetrainedmodelwasusedtoidentifylogosinreal-time.

Experimentalresultsshowedthattheproposedmethodachievedhighrecognitionaccuracyandfastrecognitionspeed.Itcaneffectivelyrecognizelogosfromimagescapturedunderdifferentilluminationandangleconditions.Inaddition,themethodisscalableandcanbeappliedtoalargenumberoflogorecognitiontasksinintelligenttransportationsystems.

Inconclusion,theproposedlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologyhasgreatpotentialforapplicationinintelligenttransportationsystems.Itprovidesaneffectivesolutionforautomaticlogorecognition,whichcanimprovetheefficiencyandqualityoftrafficmanagementandreducetherisksoftrafficaccidents.Themethodcanalsobeextendedtootherfields,suchasproductrecognition,facerecognition,andobjectdetectionAdditionally,theuseofdeeplearningforlogorecognitionhasthepotentialtorevolutionizethewaybusinessesoperatebyallowingfortheautomationoftasksthatpreviouslyrequiredhumanintervention.Thisincludestaskssuchasmonitoringproductplacementinstores,trackingbrandexposureinmedia,andidentifyingcounterfeitproducts.Thepossibilitiesforimprovedefficiencyandaccuracyintheseareasareendlesswiththeuseofdeeplearningforlogorecognition.

Furthermore,thealgorithmusedinthislogorecognitionmethodcanbecontinuouslyimprovedthroughtheuseoflargerandmorediversedatasets.Astheamountofdataavailablefortrainingincreases,thenetwork'sabilitytoaccuratelyrecognizelogoswillimprove.Thismeansthatthepotentialapplicationsofthistechnologywillonlycontinuetoexpandasmoredatabecomesavailable.

Inconclusion,deeplearning-basedlogorecognitionhasthepotentialtogreatlyimprovevariousaspectsofourdailylivesfromtrafficmanagementtobusinessoperations.Asthetechnologycontinuestoevolveandimprove,wecanexpecttoseeevenmorepracticalusesforlogorecognitioninthefutureOneofthepotentialapplicationsofdeeplearning-basedlogorecognitionisinadvertisingandmarketing.Advertiserscanusethistechnologytotracktheeffectivenessoftheiradvertisingcampaignsbymeasuringtheimpactofdifferentlogosandbrandelementsonconsumerbehavior.Forexample,theycanuselogorecognitiontotrackhowoftentheiradsareviewedandwhichlogosaremosteffectiveatdrivingsales.

Anotherpotentialuseforthistechnologyisinthefieldofsecurity.Deeplearning-basedlogorecognitioncanbeusedtomonitorsecuritycamerasandidentifypotentialthreatsbasedonthelogosthatarecapturedinthefootage.Thiscanhelpsecuritypersonnelrespondtoincidentsmorequicklyandwithgreateraccuracy.

Therearealsoimplicationsforintellectualpropertymanagement.Companiescanuselogorecognitiontomonitortheuseoftheirlogosandtrademarksonline,includingonsocialmediaplatforms.Thiscanhelpthemdetectandpreventtheunauthorizeduseoftheirintellectualproperty,whichcanbeacostlyproblemforbrands.

Furthermore,deeplearning-basedlogorecognitionhasthepotentialtoenhanceaccessibilityforpeoplewithvisualimpairments.Byusingimagerecognitiontechnologytodetectlogosandothervisualcues,applicationscanprovideaudiodescriptionsforpeoplewhomaynotbeabletoseethem.Thiscanmakethecontentmoreaccessibleandhelptocreateamoreinclusivesociety.

Finally,thedevelopmentofdeeplearning-basedlogorecognitionhasthepotentialtocreatenewbusinessopportunitiesinthefieldofartificialintelligence.Asthedemandfordeeplearning-basedapplicationscontinuestogrow,companiesthatspecializeindevelopingandrefiningthealgorithmsandmodelsneededforlogorecognitionwillbewell-positionedtocapitalizeonthistrend.

Overall,deeplearning-basedlogorecognitionhasthepotentialtorevolutionizeawiderangeofindustriesandareasofdailylife.Asthetechnologycontinuestoe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論