海南省儋州市一中2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末監(jiān)測試題含解析_第1頁
海南省儋州市一中2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末監(jiān)測試題含解析_第2頁
海南省儋州市一中2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末監(jiān)測試題含解析_第3頁
海南省儋州市一中2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末監(jiān)測試題含解析_第4頁
海南省儋州市一中2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一位媽媽記錄了孩子6至9歲的身高(單位:cm),所得數(shù)據(jù)如下表:年齡(歲)6789身高(cm)118126136144由散點圖可知,身高與年齡之間的線性回歸方程為,預(yù)測該孩子10歲時的身高為A.154 B.153 C.152 D.1512.設(shè)集合,則元素個數(shù)為()A.1 B.2 C.3 D.43.已知,且為第二象限角,則()A. B. C. D.4.已知數(shù)列2008,2009,1,-2008,-2009…這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2019項之和S2019A.1 B.2010 C.4018 D.40175.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,706.函數(shù)(其中,,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度7.某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是()A.月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)8.下列函數(shù)中,是偶函數(shù)且在區(qū)間上是增函數(shù)的是()A. B.C. D.9.等差數(shù)列{an}中,若S1=1A.2019 B.1 C.1009 D.101010.已知等比數(shù)列的前項和為,則下列一定成立的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,為原點,,動點滿足,則的最大值是.12.化簡:______.(要求將結(jié)果寫成最簡形式)13.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.14.函數(shù)的圖象過定點______.15.?dāng)?shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________16.已知數(shù)列的通項公式為,數(shù)列的通項公式為,設(shè),若在數(shù)列中,對任意恒成立,則實數(shù)的取值范圍是_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求不等式的解集;(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.18.如圖,在平面直角坐標(biāo)系中,已知圓:,點,過點的直線與圓交于不同的兩點(不在y軸上).(1)若直線的斜率為3,求的長度;(2)設(shè)直線的斜率分別為,求證:為定值,并求出該定值;(3)設(shè)的中點為,是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.19.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.20.據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計算出圖案中球與圓柱的體積比;(2)假設(shè)球半徑.試計算出圖案中圓錐的體積和表面積.21.已知(1)化簡;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)題意,由表格可知,身高y與年齡x之間的線性回歸直線方程為,那么可知回歸方程必定過樣本中心點,即為(7,131)代入可知,=65,預(yù)測該學(xué)生10歲時的身高,將x=10代入方程中,即可知為153,故可知答案為B考點:線性回歸直線方程點評:主要是考查了線性回歸直線方程的回歸系數(shù)的運用,屬于基礎(chǔ)題.2、B【解析】

計算圓心到直線的距離,可知直線與圓相交,可得結(jié)果.【詳解】由,圓心為,半徑為1所以可知圓心到直線的距離為所以直線與圓相交,故可知元素個數(shù)為2故選:B【點睛】本題主要考查直線與圓的位置關(guān)系判斷,屬基礎(chǔ)題.3、D【解析】

首先根據(jù)題意得到,,再計算即可.【詳解】因為,且為第二象限角,,..故選:D【點睛】本題主要考查正切二倍角的計算,同時考查了三角函數(shù)的誘導(dǎo)公式和同角三角函數(shù)的關(guān)系,屬于簡單題.4、C【解析】

計算數(shù)列的前幾項,觀察數(shù)列是一個周期為6的數(shù)列,計算得到答案.【詳解】從第二項起,每一項都等于它的前后兩項之和計算數(shù)列前幾項得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…觀察知:數(shù)列是一個周期為6的數(shù)列每個周期和為0S故答案為C【點睛】本題考查了數(shù)列的前N項和,觀察數(shù)列的周期是解題的關(guān)鍵.5、B【解析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.6、C【解析】

通過圖象可以知道:最低點的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點的坐標(biāo)為,與之相鄰的最低點的坐標(biāo)為,這樣可以求出和最小正周期,利用余弦型函數(shù)最小正周期公式,可以求出,把零點代入解析式中,可以求出,這樣可以求出函數(shù)的解析式,利用誘導(dǎo)公式化為正弦型三角函數(shù)解析式形式,最后利用平移變換解析式的變化得出正確答案.【詳解】由圖象可知:函數(shù)的最低點的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點的坐標(biāo)為,與之相鄰的最低點的坐標(biāo)為,所以,設(shè)函數(shù)的最小正周期為,則有,而,把代入函數(shù)解析式中,得,所以,而,顯然由向右平移個單位長度得到的圖象,故本題選C.【點睛】本題考查了由函數(shù)圖象求余弦型函數(shù)解析式,考查了正弦型函數(shù)圖象之間的平移變換規(guī)律.7、D【解析】

根據(jù)折線圖中11個月的數(shù)據(jù)分布,數(shù)據(jù)從小到大排列中間的數(shù)可得中位數(shù),根據(jù)數(shù)據(jù)的增長趨勢可判斷BCD.【詳解】由折線圖知,月跑步平均里程的中位數(shù)為5月份對應(yīng)的里程數(shù);月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C錯.本題選擇D選項.【點睛】本題主要考查了識別折線圖進行數(shù)據(jù)分析,屬于基礎(chǔ)題.8、A【解析】

逐一分析選項,得到答案.【詳解】A.是偶函數(shù),并且在區(qū)間時增函數(shù),滿足條件;B.不是偶函數(shù),并且在上是減函數(shù),不滿足條件;C.是奇函數(shù),并且在區(qū)間上時減函數(shù),不滿足條件;D.是偶函數(shù),在區(qū)間上是減函數(shù),不滿足條件;故選A.【點睛】本題考查了函數(shù)的基本性質(zhì),屬于基礎(chǔ)題型.9、D【解析】

由等差數(shù)列{an}中,S1=1,S【詳解】∵等差數(shù)列{an}中,S∴S即15=5+10d,解得d=1,∴S故選:D.【點睛】本題考查等差數(shù)列基本量的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.10、C【解析】

設(shè)等比數(shù)列的公比為q,利用通項公式與求和公式即可判斷出結(jié)論.【詳解】設(shè)等比數(shù)列的公比為q,若,則,則,而與0的大小關(guān)系不確定.若,則,則與同號,則與0的大小關(guān)系不確定.故選:C【點睛】本題主要考查了等比數(shù)列的通項公式與求和公式及其性質(zhì)、不等式的性質(zhì)與解法,考查了推理能力與計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點:1.圓的標(biāo)準方程;2.向量模的運算12、【解析】

結(jié)合誘導(dǎo)公式化簡,再結(jié)合兩角差正弦公式分析即可【詳解】故答案為:【點睛】本題考查三角函數(shù)的化簡,誘導(dǎo)公式的使用,屬于基礎(chǔ)題13、【解析】

根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學(xué)生的計算能力,屬于難題.14、【解析】

令真數(shù)為,求出的值,代入函數(shù)解析式可得出定點坐標(biāo).【詳解】令,得,當(dāng)時,.因此,函數(shù)的圖象過定點.故答案為:.【點睛】本題考查對數(shù)型函數(shù)圖象過定點問題,一般利用真數(shù)為來求得,考查計算能力,屬于基礎(chǔ)題.15、【解析】

因為數(shù)列有極限,故考慮的情況.又數(shù)列分兩組,故分組求和求極限即可.【詳解】因為,故,且,故,又,即.綜上有.故答案為:【點睛】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關(guān)系,屬于中等題型.16、【解析】

首先分析題意,可知是取和中的最大值,且是該數(shù)列中的最小項,結(jié)合數(shù)列的單調(diào)性和數(shù)列的單調(diào)性可得出或,代入數(shù)列的通項公式即可求出實數(shù)的取值范圍.【詳解】由題意可知,是取和中的最大值,且是數(shù)列中的最小項.若,則,則前面不會有數(shù)列的項,由于數(shù)列是單調(diào)遞減數(shù)列,數(shù)列是單調(diào)遞增數(shù)列.,數(shù)列單調(diào)遞減,當(dāng)時,必有,即.此時,應(yīng)有,,即,解得.,即,得,此時;若,則,同理,前面不能有數(shù)列的項,即,當(dāng)時,數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,.當(dāng)時,,由,即,解得.由,得,解得,此時.綜上所述,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查利用數(shù)列的最小項求參數(shù)的取值范圍,同時也考查了數(shù)列中的新定義,解題的關(guān)鍵就是要分析出數(shù)列的單調(diào)性,利用一些特殊項的大小關(guān)系得出不等式組進行求解,考查分析問題和解決問題的能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)不等式可化為:,比較與的大小,進而求出解集.(2)恒成立即恒成立,則,進而求得答案.【詳解】解:(1)不等式可化為:,①當(dāng)時,不等無解;②當(dāng)時,不等式的解集為;③當(dāng)時,不等式的解集為.(2)由可化為:,必有:,化為,解得:.【點睛】本題考查含參不等式的解法以及恒成立問題,屬于一般題.18、(1);(2)見解析;(3)見解析【解析】

(1)求出圓心O到直線的距離,已知半徑通過勾股定理即可算出弦長的一半,即可算出弦長。(2)設(shè),直線的方程為,聯(lián)立圓的方程通過韋達定理化簡即可。(3)設(shè)點,根據(jù),得,表示出,的關(guān)系,再聯(lián)立直線和圓的方程得到,與k的關(guān)系,代入可解出k,最后再通過有兩個交點判斷即可求出k值?!驹斀狻浚?)由直線的斜率為3,可得直線的方程為所以圓心到直線的距離為所以(2)直線的方程為,代入圓可得方程設(shè),則所以為定值,定值為0(3)設(shè)點,由,可得:,即,化得:由(*)及直線的方程可得:,代入上式可得:,可化為:求得:又由(*)解得:所以不符合題意,所以不存在符合條件的直線.【點睛】此題考查圓錐曲線,一般采用設(shè)而不求通過韋達定理表示,將需要求解的量用斜率k表示,起到消元的作用,計算相對復(fù)雜,屬于較難題目。19、(Ⅰ)(Ⅱ)().【解析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對應(yīng)求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點】兩角和的正弦公式、周期公式、三角函數(shù)的單調(diào)性.【名師點睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準式,然后通過同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單調(diào)區(qū)間內(nèi).若不是同名三角函數(shù),則應(yīng)考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.20、(1);(2)圓錐體積,表面積【解析】

(1)由球的半徑可知圓柱底面半徑和高,代入球和圓柱的體積公式求得體積,作比得到結(jié)果;(2)由球的半徑可得圓錐底面半徑和高,從而可求解出圓錐母線長,代入圓錐體積和表面積公式可求得結(jié)果.【詳解】(1)設(shè)球的半徑為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論