




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.我國古代數(shù)學名著《九章算術》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.3.已知為等差數(shù)列,,,則等于().A. B. C. D.4.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移5.等比數(shù)列中,,則等于()A.16 B.±4 C.-4 D.46.若函數(shù)局部圖象如圖所示,則函數(shù)的解析式為A. B.C. D.7.若一個正四棱錐的側棱和底面邊長相等,則該正四棱錐的側棱和底面所成的角為()A.30° B.45° C.60° D.90°8.阿波羅尼斯是古希臘著名的數(shù)學家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學三巨匠,他對幾何問題有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指出的是:已知動點M與兩定點A,B的距離之比為,那么點M的軌跡是一個圓,稱之為阿波羅尼斯圓.請解答下面問題:已知,,若直線上存在點M滿足,則實數(shù)c的取值范圍是()A. B. C. D.9.如圖,在中,,用向量,表示,正確的是A. B.C. D.10.已知,,,,那么()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算:______.12.已知向量、滿足:,,,則_________.13.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.14.已知等比數(shù)列、、、滿足,,,則的取值范圍為__________.15.若直線平分圓,則的值為________.16.在區(qū)間上,與角終邊相同的角為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)求的值:(2)求的值.18.已知函數(shù).(1)若,求函數(shù)的值;(2)求函數(shù)的值域.19.已知為坐標原點,,,若.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當時,若方程有根,求的取值范圍.20.已知函數(shù).(1)求不等式的解集;(2)若當時,恒成立,求實數(shù)的取值范圍.21.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)充分條件和必要條件的定義,結合線面垂直的性質(zhì)進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質(zhì)和定義是解決本題的關鍵.難度不大,屬于基礎題2、A【解析】
分別計算出每個面積,相加得到答案.【詳解】故答案選A【點睛】本題考查了圖像的表面積,意在考查學生的計算能力.3、B【解析】
利用等差數(shù)列的通項公式,列出方程組,求出首項和公差,由此能求出.【詳解】解:為等差數(shù)列,,,,,,,,,.故選:【點睛】本題考查等差數(shù)列的第20項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.4、B【解析】
先利用誘導公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【點睛】本題考查誘導公式、三角函數(shù)的平移變換,考查邏輯推理能力和運算求解能力,求解時注意平移是針對自變量而言的.5、D【解析】分析:利用等比中項求解.詳解:,因為為正,解得.點睛:等比數(shù)列的性質(zhì):若,則.6、D【解析】
由的部分圖象可求得A,T,從而可得,再由,結合的范圍可求得,從而可得答案.【詳解】,;又由圖象可得:,可得:,,,.,,又,當時,可得:,此時,可得:故選D.【點睛】本題考查由的部分圖象確定函數(shù)解析式,常用五點法求得的值,屬于中檔題.7、B【解析】
正四棱錐,連接底面對角線,在中,為側棱與地面所成角,通過邊的關系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學生的計算能力和空間想象力.8、B【解析】
根據(jù)題意設點M的坐標為,利用兩點間的距離公式可得到關于的一元二次方程,只需即可求解.【詳解】點M在直線上,不妨設點M的坐標為,由直線上存在點M滿足,則,整理可得,,所以實數(shù)c的取值范圍為.故選:B【點睛】本題考查了兩點間的距離公式、一元二次不等式的解法,考查了學生分析問題解決問題的能力,屬于中檔題.9、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【詳解】因為,故選C.【點睛】本題考查向量的加法和數(shù)乘運算的幾何意義,考查平面向量基本定理在圖形中的應用.10、C【解析】由于故,故,所以.由于,由于,所以,故.綜上所述選.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關鍵,考查計算能力,屬于基礎題.12、.【解析】
將等式兩邊平方得出的值,再利用結合平面向量的數(shù)量積運算律可得出結果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.13、【解析】
根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。14、【解析】
設等比數(shù)列、、、的公比為,由和計算出的取值范圍,再由可得出的取值范圍.【詳解】設等比數(shù)列、、、的公比為,,,,所以,,,.所以,,故答案為:.【點睛】本題考查等比數(shù)列通項公式及其性質(zhì),解題的關鍵就是利用已知條件求出公比的取值范圍,考查運算求解能力,屬于中等題.15、1【解析】
把圓的一般式方程化為標準方程得到圓心,根據(jù)直線過圓心,把圓心的坐標代入到直線的方程,得到關于的方程,解方程即可【詳解】圓的標準方程為,則圓心為直線過圓心解得故答案為【點睛】本題考查的是直線與圓的位置關系,解題的關鍵是求出圓心的坐標,屬于基礎題16、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用平方關系、誘導公式以及誘導公式即可求解;(2)利用輔助角公式以及二倍角的正弦公式化簡即可求值.【詳解】(1)因為且所以;(2).【點睛】本題主要考查了三角函數(shù)的化簡與求值,關鍵是利用誘導公式、同角三角函數(shù)的基本關系以及輔助角公式來求解,屬于中檔題.18、(1);(2).【解析】
(1),.(2)由(1),,∴函數(shù)的值域為[1,2].19、(1)的單調(diào)減區(qū)間為;(2).【解析】試題分析:(1)根據(jù)向量點積的坐標運算得到,根據(jù)正弦函數(shù)的單調(diào)性得到單調(diào)遞減區(qū)間;(2)將式子變形為.有解,轉化為值域問題.解析:(Ⅰ)∵,,∴其單調(diào)遞減區(qū)間滿足,,所以的單調(diào)減區(qū)間為.(Ⅱ)∵當時,方程有根,∴.∵,∴,∴,∴,∴.點睛:這個題目考查了,向量點積運算,三角函數(shù)的化一公式,,正弦函數(shù)的單調(diào)性問題,三角函數(shù)的值域和圖像問題.第二問還要用到了方程的零點的問題.一般函數(shù)的零點和方程的根,圖象的交點是同一個問題,可以互相轉化.20、(1)見解析;(2)【解析】
(1)不等式可化為:,比較與的大小,進而求出解集.(2)恒成立即恒成立,則,進而求得答案.【詳解】解:(1)不等式可化為:,①當時,不等無解;②當時,不等式的解集為;③當時,不等式的解集為.(2)由可化為:,必有:,化為,解得:.【點睛】本題考查含參不等式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江中醫(yī)藥大學濱江學院《醫(yī)患溝通與技巧》2023-2024學年第二學期期末試卷
- 圖木舒克職業(yè)技術學院《學前教育史》2023-2024學年第二學期期末試卷
- 濰坊環(huán)境工程職業(yè)學院《科研方法論》2023-2024學年第二學期期末試卷
- 厚、薄膜混合集成電路及消費類電路項目效益評估報告
- 浙江警官職業(yè)學院《地域史研究方法與實踐》2023-2024學年第二學期期末試卷
- 河池廣西河池市環(huán)江縣招聘教師29人筆試歷年參考題庫附帶答案詳解
- 演藝導演合同范本
- 山西農(nóng)業(yè)大學《工程力學A1》2023-2024學年第二學期期末試卷
- 福州英華職業(yè)學院《簡筆畫與繪本》2023-2024學年第二學期期末試卷
- 蘇州工藝美術職業(yè)技術學院《JAVA企業(yè)級開發(fā)》2023-2024學年第二學期期末試卷
- 護理中級競聘報告
- 《肩袖損傷護理》課件
- 維修保養(yǎng)協(xié)議書范本
- 河南省鄭州市外國語高中2025屆高考壓軸卷英語試卷含解析
- TDT1075-2023光伏發(fā)電站工程項目用地控制指標
- 新版第三類醫(yī)療器械分類目錄
- 2024全新血液透析培訓
- 護校隊工作職責及管理制度
- 2024年湖南省公務員考試《行測》真題及答案解析
- GB/T 623-2024化學試劑高氯酸
- DB22T 5167-2024 市政橋梁結構監(jiān)測系統(tǒng)運行維護與管理標準
評論
0/150
提交評論