版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
MaterialsandStructures?
RILEM
10.1617/s11527-010-9700-yOriginalArticleImpactofcrackwidthonbond:confinedandunconfinedrebarDavid
W.
Law1
,Denglei
Tang2,Thomas
K.
C.
Molyneaux3andRebecca
Gravina3(1)
SchooloftheBuiltEnvironment,HeriotWattUniversity,Edinburgh,EH144AS,UK(2)
VicRoads,Melbourne,VIC,Australia(3)
SchoolofCivil,EnvironmentalandChemicalEngineering,RMITUniversity,Melbourne,VIC,3000,AustraliaDavid
W.
Law
Email:Received:14
January
Accepted:14
December
Publishedonline:23
December
Abstract
Thispaperreportstheresultsofaresearchprojectcomparingtheeffectofsurfacecrackwidthanddegreeofcorrosiononthebondstrengthofconfinedandunconfineddeformed12and16
mmmildsteelreinforcingbars.ThecorrosionwasinducedbychloridecontaminationoftheconcreteandanappliedDCcurrent.Theprincipalparametersinvestigatedwereconfinementofthereinforcement,thecoverdepth,bardiameter,degreeofcorrosionandthesurfacecrackwidth.Theresultsindicatedthatpotentialrelationshipbetweenthecrackwidthandthebondstrength.Theresultsalsoshowedanincreaseinbondstrengthatthepointwhereinitialsurfacecrackingwasobservedforbarswithconfiningstirrups.Nosuchincreasewasobservedwithunconfinedspecimens.Keywords
Bond
-
Corrosion
-
Rebar
-
Cover
-
Crackwidth
-
Concrete1
IntroductionThecorrosionofsteelreinforcementisamajorcauseofthedeteriorationofreinforcedconcretestructuresthroughouttheworld.Inuncorrodedstructuresthebondbetweenthesteelreinforcementandtheconcreteensuresthatreinforcedconcreteactsinacompositemanner.However,whencorrosionofthesteeloccursthiscompositeperformanceisadverselyaffected.Thisisduetotheformationofcorrosionproductsonthesteelsurface,whichaffectthebondbetweenthesteelandtheconcrete.Thedeteriorationofreinforcedconcreteischaracterizedbyageneralorlocalizedlossofsectiononthereinforcingbarsandtheformationofexpansivecorrosionproducts.Thisdeteriorationcanaffectstructuresinanumberofways;theproductionofexpansiveproductscreatestensilestresseswithintheconcrete,whichcanresultincrackingandspallingoftheconcretecover.Thiscrackingcanleadtoacceleratedingressoftheaggressiveagentscausingfurthercorrosion.Itcanalsoresultinalossofstrengthandstiffnessoftheconcretecover.Thecorrosionproductscanalsoaffectthebondstrengthbetweentheconcreteandthereinforcingsteel.Finallythecorrosionreducesthecrosssectionofthereinforcingsteel,whichcanaffecttheductilityofthesteelandtheloadbearingcapacity,whichcanultimatelyimpactupontheserviceabilityofthestructureandthestructuralcapacity[12,25].Previousresearchhasinvestigatedtheimpactofcorrosiononbond[2–5,7,12,20,23–25,27,29],withanumberofmodelsbeingproposed[4,6,9,10,18,19,24,29].Themajorityofthisresearchhasfocusedontherelationshipbetweenthelevelofcorrosion(masslossofsteel)orthecurrentdensitydegree(corrosioncurrentappliedinacceleratedtesting)andcrackwidth,orontherelationshipbetweenbondstrengthandlevelofcorrosion.Otherresearchhasinvestigatedthemechanicalbehaviourofcorrodedsteel[1,11]andthefrictioncharacteristics[13].However,littleresearchhasfocusedontherelationshipbetweencrackwidthandbond[23,26,28],aparameterthatcanbemeasuredwithrelativeeaseonactualstructures.Thecorrosionofthereinforcingsteelresultsintheformationofironoxideswhichoccupyalargervolumethanthatoftheparentmetal.Thisexpansioncreatestensilestresseswithinthesurroundingconcrete,eventuallyleadingtocrackingofthecoverconcrete.Oncecrackingoccursthereisalossofconfiningforcefromtheconcrete.Thissuggeststhatthelossofbondcapacitycouldberelatedtothelongitudinalcrackwidth[12].However,theuseofconfinementwithintheconcretecancounteractthislossofbondcapacitytoacertaindegree.Researchtodatehasprimarilyinvolvedspecimenswithconfinement.Thispaperreportsastudycomparingthelossofbondofspecimenswithandwithoutconfinement.2
Experimentalinvestigation2.1
SpecimensBeamendspecimens[28]wereselectedforthisstudy.Thistypeofeccentricpulloutor‘beamend’typespecimenusesabondedlengthrepresentativeoftheanchoragezoneofatypicalsimplysupportedbeam.Specimensofrectangularcrosssectionwerecastwithalongitudinalreinforcingbarineachcorner,Fig.
1.An80
mmplastictubewasprovidedatthebarunderneaththetransversereactiontoensurethatthebondstrengthwasnotenhancedduetoa(transverse)compressiveforceactingonthebaroverthislength.Fig.
1
BeamendspecimenDeformedrebarof12and16
mmdiameterwithcoverofthreetimesbardiameterwereinvestigated.Duplicatesetsofconfinedandunconfinedspecimensweretested.Theconfinedspecimenshadthreesetsof6
mmstainlesssteelstirrupsequallyspacedfromtheplastictube,at75
mmcentres.Thisrepresentsfourgroupsofspecimenswithacombinationofdifferentbardiameterandwith/withoutconfinement.Thespecimenswereselectedinordertoinvestigatetheinfluenceofbarsize,confinementandcrackwidthonbondstrength.2.2
MaterialsThemixdesignisshown,Table
1.ThecementwasTypeIPortlandcement,theaggregatewasbasaltwithspecificgravity2.99.ThecoarseandfineaggregatewerepreparedinaccordancewithAS1141-.MixingwasundertakeninaccordancewithAS1012.2-1994.Specimenswerecuredfor28
daysunderwethessianbeforetesting.Table
1
ConcretemixdesignMaterialCementw/cSand10
mmwashedaggregate7
mmwashedaggregateSaltSlumpQuantity381
kg/m30.49517
kg/m3463
kg/m3463
kg/m318.84
kg/m3140
±
25
mmInordertocomparebondstrengthforthedifferentconcretecompressivestrengths,Eq.
1isusedtonormalizebondstrengthfornon-corrodedspecimensashasbeenusedbyotherresearcher[8].(1)whereisthebondstrengthforgrade40concrete,τexptlistheexperimentalbondstrengthandfcistheexperimentalcompressivestrength.ThetensilestrengthoftheΦ12andΦ16
mmsteelbarswasnominally500
MPa,whichequatestoafailureloadof56.5and100.5
kN,respectively.2.3
ExperimentmethodologyAcceleratedcorrosionhasbeenusedbyanumberofauthorstoreplicatethecorrosionofthereinforcingsteelhappeninginthenaturalenvironment[2,3,5,6,10,18,20,24,27,28,30].Thesehaveinvolvedexperimentsusingimpressedcurrentsorartificialweatheringwithwet/drycyclesandelevatedtemperaturestoreducethetimeuntilcorrosion,whilemaintainingdeteriorationmechanismsrepresentativeofnaturalexposure.Studiesusingimpressedcurrentshaveusedcurrentdensitiesbetween100
μA/cm2and500
mA/cm2[20].Researchhassuggestedthatcurrentdensitiesupto200
μA/cm2resultinsimilarstressesduringtheearlystagesofcorrosionwhencomparedto100
μA/cm2[21].Assuchanappliedcurrentdensityof200
μA/cm2wasselectedforthisstudy—representativeofthelowerendofthespectrumofsuchcurrentdensitiesadoptedinpreviousresearch.However,cautionshouldbeappliedwhenacceleratingthecorrosionusingimpressedcurrentastheaccelerationprocessdoesnotexactlyreplicatethemechanismsinvolvedinactualstructures.Inacceleratedteststhepitsarenotallowedtoprogressnaturally,andtheremaybeamoreuniformcorrosiononthesurface.Alsotherateofcorrosionmayimpactonthecorrosionproducts,suchthatdifferentoxidationstateproductsmaybeformed,whichcouldimpactonbond.Thesteelbarsservedastheanodeandfourmildsteelmetalplateswerefixedonthesurfacetoserveascathodes.Sponges(sprayedwithsaltwater)wereplacedbetweenthemetalplatesandconcretetoprovideanadequatecontact,Fig.
2.Fig.
2
AcceleratedcorrosionsystemWhentherequiredcrackwidthwasachievedforaparticularbar,theimpressedcurrentwasdiscontinuedforthatbar.Thespecimenwasremovedforpullouttestingwhenallfourlocationsexhibitedthetargetcrackwidth.Averagesurfacecrackwidthsof0.05,0.5,1and1.5
mmwereadoptedasthetargetcrackwidths.Thesurfacecrackwidthwasmeasuredat20
mmintervalsalongthelengthofthebar,beginning20
mmfromtheendofthe(plastictube)bondbreakerusinganopticalmicroscope.Thelevelofaccuracyinthemeasurementswas±0.02
mm.Measurementsofcrackwidthweretakenonthesurfacenormaltothebardirectionregardlessoftheactualcrackorientationatthatlocation.Bondstrengthtestswereconductedbymeansofahandoperatedhydraulicjackandacustom-builttestrigasshowninFig.
3.TheloadingschemeisillustratedinFig.
4.Aplastictubeoflength80
mmwasprovidedattheendoftheconcretesectionunderneaththetransversereactiontoensurethatthebondstrengthwasnotenhancedbythereactive(compressive)force(actingnormaltothebar).Thespecimenwaspositionedsothatanaxialforcewasappliedtothebarbeingtested.Therestraintsweresufficientlyrigidtoensureminimalrotationortwistingofthespecimenduringloading.Fig.
3
Pull-outtest,16
mmbarunconfinedFig.
4
Schematicofloading.Note:onlytestbarshownforclarity3
Experimentalresultsanddiscussion3.1
VisualinspectionFollowingtheacceleratedcorrosionphaseeachspecimenwasvisuallyinspectedforthelocationofcracks,meancrackwidthandmaximumcrackwidth(Sect.
2.3).Whileeachspecimenhadameantargetcrackwidthforeachbar,variationsinthiscrackwidthwereobservedpriortopullouttesting.Thisisduetocorrosionandcrackingbeingadynamicprocesswithcrackspropagatingatdifferentrates.Thus,whileindividualbarsweredisconnected,oncethetargetcrackwidthhadbeenachieved,corrosionandcrackpropagationcontinued(tosomeextent)untilallbarshadachievedthetargetcrackwidthandpullouttestsconducted.Thisresultedinarangeofdataforthemaximumandmeancrackwidthsforthepullouttests.Thevisualinspectionofthespecimensshowedthreestagestothecrackingprocess.Theinitialcracksoccurredinaveryshortperiod,usuallygeneratedwithinafewdays.Afterthat,mostcracksgrewataconstantrateuntiltheyreached1
mm,3–4
weeksafterfirstcracking.Aftercrackshadreached1
mmtheythengrewveryslowly,withsomecracksnotincreasingatall.Fortheconfinedandunconfinedspecimensthesurfacecrackstendedtooccuronthesideofthespecimens(asopposedtothetoporbottom)andtofollowthelineofthebars.Inthecaseoftheunconfinedspecimensingeneraltheseweretheonlycrackwhileitwascommoninthecasesofconfinedspecimenstoobservecracksthatwerealignedverticallydowntheside—adjacenttooneofthelinks,Fig.
5.Fig.
5
TypicalcrackpatternsDuringthepull-outtestingthemostcommonfailuremodeforbothconfinedandunconfinedwassplittingfailure—withtheinitial(pre-test)crackscausedbythecorrosionenlargingunderloadandultimatelyleadingtothesectionfailingexhibitingspallingofthetopcorner/edge,Fig.
6.Howeverforseveraloftheconfinedspecimens,asecondmodeoffailurealsooccurredwithdiagonal(shearlike)cracksappearinginthesidewalls,Fig.
7.Theappearanceofthesecracksdidnotappeartoberelatedtothepresenceofverticalcracksobserved(inspecimenswithstirrups)duringthecorrosionphaseasreportedabove.Fig.
6
Longitudinalcrackingafterpull-outFig.
7
Diagonalcrackingafterpull-outThebarswereinitially(precasting)cleanedwitha12%hydrochloricacidsolution,thenwashedindistilledwaterandneutralizedbyacalciumhydroxidesolutionbeforebeingwashedindistilledwateragain.Followingthepull-outtests,thecorrodedbarswerecleanedinthesamewayandweighedagain.ThecorrosiondegreewasdeterminedusingthefollowingequationwhereG0istheinitialweightofthesteelbarbeforecorrosion,Gisthefinalweightofthesteelbarafterremovalofthepost-testcorrosionproducts,g0istheweightperunitlengthofthesteelbar(0.888and1.58
g/mmforΦ12andΦ16
mm
bars,respectively),listheembeddedbondlength.Figures
8and9showsteelbarswithvaryingdegreeofcorrosion.Themajorityexhibitedvisiblepitting,similartothatobservedonreinforcementinactualstructures,Fig.
9.However,asmallnumberofothersexhibitedsignificantoverallsectionloss,withamoreuniformlevelofcorrosion,Fig.
8,whichmaybeafunctionoftheaccelerationmethodology.Fig.
8
Corroded12
mmbarwithapproximately30%masslossFig.
9
Corroded16
mmbarwithapproximately15%massloss3.2
BondstressandcrackwidthFigure
10showsthevariationofbondstresswithmeancrackwidthfor16
mm
barsandFig.
11forthe12
mm
bars.Figures
12and13showthedataforthemaximumcrackwidth.Fig.
10
Meancrackwidthversusbondstressfor16mmbarsFig.
11
Meancrackwidthversusbondstressfor12
mmbarsFig.
12
Maximumcrackwidthversusbondstressfor16
mmbarsFig.
13
Maximumcrackwidthversusbondstressfor12
mmbarsThedatashowaninitialincreaseinbondstrengthforthe12
mmspecimenswithstirrups,followedbyasignificantdecreaseinbond,whichisinagreementwithotherauthors[12,15].Forthe16
mmspecimensanincreaseonthecontrolbondstresswasobservedforspecimenswith0.28and0.35
mmmeancrackwidths,however,adecreaseinbondstresswasobservedforatthemeancrackwidthof0.05
mm.The12
mmbarswithstirrupsdisplayedanincreaseinbondstressofapproximately25%fromthecontrolvaluestothemaximumbondstress.Anincreaseofapproximately14%wasobservedforthe16
mmspecimens.Otherresearchers[17,24,25]havereportedenhancementsofbondstressofbetween10and60%duetoconfinement,slightlyhighertothatobservedintheseexperiment.Howevertheloadingtechniquesandcoverdepthshavenotallbeenthesame.Variationsinexperimentaltechniquesincludeashorterembeddedlengthandalowercover.Thevariationontheproposedempiricalrelationshipbetweenbondstrength,degreeofcorrosion,barsize,cover,linkdetailsandtensilestrengthpredictedbyRodriguez[24]hasbeendiscussedindetailinTangetal.[28].Theanalysisdemonstratesthattherewouldbeanexpectedenhancementofbondstrengthduetoconfinementofapproximately25%—correspondingtoachangeofbondstrengthofapproximately0.75
MPaforthe16
mmbars(assessedata2%sectionloss).Forthe12
mmbarsthecorrespondingeffectofconfinementisfoundtobeapproximately35%correspondingtoa1.0
MPadifferenceinbondstress.Theexperimentalresults(14and25%,above)are60–70%ofthesevalues.Bothsetsofdataindicatearelationshipshowingdecreasingbondstrengthwith(visiblesurface)crackwidth.Aregressionanalysisofthebondstrengthdatarevealsabetterlinearrelationshipwiththemaximumcrackwidthasopposedtothemeancrackwidth(excludingtheuncrackedconfinedspecimens),Table
2.Table
2
Bestfitparameters,crackwidthversusbondstrength
Unconfined12
mmConfined12
mmUnconfined16
mmConfined16
mmMeancrackwidth
R20.9200.6370.6720.659
Slope(m)?3.997?3.653?2.999?8.848
Intercept(b)7.5608.1226.4968.746Maximumcrackwidth
R20.9370.8550.7140.616
Slope(m)?2.719?2.968?1.815?5.330
Intercept(b)7.8058.4036.7079.636Therewasalsoasignificantlybetterfitfortheunconfinedspecimensthantheconfinedspecimens.Thisisconsistentwiththeobservationthatintheunconfinedspecimensthebondstrengthwillberelatedtothebondbetweenthebarsandtheconcrete,whichwillbeaffectedbythelevelofcorrosionpresent,whichitselfwillinfluencethecrackwidth.Inconfinedspecimenstheconfiningsteelwillimpactuponboththebondandthecracking.3.3
CorrosiondegreeandbondstressItisapparentthat(Fig.
14)forcorrosiondegreeslessthan5%thebondstresscorrelatedwell.However,asthedegreeofcorrosionincreasedtherewasnoobservablecorrelationatall.Thiscontrastswiththerelationshipbetweentheobservedcrackwidthandbondstress,whichgivesareasonablecorrelation,evenascrackwidthsincreaseto2and2.5
mm.Apossibleexplanationforthisvariationisthatintheinitialstagesofcorrosionvirtuallyallthedissolvedironionsreacttoformexpansivecorrosionproducts.Thisreactionimpactsonboththebondstressandtheformationofcracks.However,oncecrackshavebeenformeditispossiblefortheironionstobetransportedalongthecrackandoutoftheconcrete.Asthebondhasalreadybeeneffectivelylostatthecrackanyironionsdissolvingatthecrackandbeingdirectlytransportedoutoftheconcretewillcauseanincreaseinthedegreeofcorrosion,butnotaffectthesurfacecrackwidth.Thelocation,orientationandchemistrywithinthecrackwillcontroltherelationshipbetweenbondstressanddegreeofcorrosion,whichwillvaryfromspecimentospecimen.Hencethelargevariationsincorrosiondegreeandbondstressforhighlevelsofcorrosion.Fig.
14
Bondstressversuscorrosiondegree,12
mmbars,unconfinedspecimenSignificantlylargercrackwidthswereobservedfortheunconfinedspecimens,comparedtotheconfinedspecimenswithsimilarlevelsofcorrosionandmasslost.Thelargestobservedcrackforunconfinedspecimenswas2.5
mmcomparedto1.4
mmfortheconfinedspecimens.Thisisasexpectedandisadirectresultoftheconfinementwhichlimitsthedegreeofcracking.3.4
EffectofconfinementTheunconfinedspecimensforboth16and12
mmbarsdidnotdisplaytheinitialincreaseinbondstrengthobservedfortheconfinedbars.Indeedtheunconfinedspecimenswithcracksalldisplayedareducedbondstresscomparedtothecontrolspecimens.Thisisinagreementwithotherauthors[16,24]findingsforcrackedspecimens.IncrackedcorrodedspecimensFangobservedasubstantialreductioninbondstrengthfordeformedbarswithoutstirrups,whileRodriguezobservedbondstrengthsofhighlycorrodedcrackedspecimenswithoutstirrupswereclosetozero,whilehighlycorrodedcrackedspecimenswithstirrupsretainedbondstrengthsofbetween3and4
MPa.InuncorrodedspecimensChananotedanincreaseinbondstrengthduetostirrupsofbetween10and20%[14].HoweverRodriguezandFangobservednovariationduetothepresenceofconfinementinuncorrodedbars.Thedataisperhapsunexpectedasitcouldbeanticipatedthatthecorrosionproductswouldleadtoanincreaseinbondduetotheincreaseininternalpressures,causedbythecorrosionproductsincreasingtheconfinementandmechanicalinterlockingaroundthebar,coupledwithincreasedroughnessofthebarresultinginagreaterfrictionbetweenthebarandthesurroundingconcrete.However,thesepressureswouldthenrelievedbythesubsequentcrackingoftheconcrete,whichwouldcontributetothedecreaseinthebondstrengthascrackwidthsincrease.Apossiblehypothesisisthatduetothelevelofcover,threetimesbardiameter,theeffectofconfinementbythestirrupsisreduced,suchthatithaslittleimpactonthebondstressinuncrackedconcrete.However,oncecrackinghastakenplacetheconfinementdoeshaveabeneficialeffectonthebond.Itmayalsobethatthecompressivestrengthoftheconcretecombinedwiththecoverwillhaveaneffectonthebondstressesforuncorrodedspecimens.Thedatapresentedherehasacoverofthreetimesbardiameterandastrengthof40
MPa,otherresearchrangesfrom1.5tofourtimescoverwithcompressivestrengthsfrom40to77
MPa.3.5
Comparisonof12and16
mmrebarThemaximumbondstressfor16
mmunconfinedbarswasmeasuredat8.06
MPaandforthe12
mm
barsitwas8.43
MPa.Thesebothcorrespondedtothecontrolspecimenswithnocorrosion.Theunconfinedspecimensforboththe12and16
mm
barsshowednoincreaseinbondstressduetocorrosion.Fortheconfinedspecimensthemaximumbondstressforthecontrolspecimenswere7.29
MPaforthe12
mm
barsand6.34
MPaforthe16
mmbars.Themaximumbondstressforbothsetsofconfinedspecimenscorrespondedtopointoftheinitialcracking.Themaximumbondstresseswereobservedatameancrackwidthof0.01
mmforthe12
mmbarsand0.28
mmforthe16
mmbars.Thecorrespondingbondstresseswere,8.45and7.20
MPa.Overallthe12
mmbarsdisplayedhigherbondstressescomparedtothe16
mmbarsatallcrackwidths.Thisisattributedtoadifferentfailuremode.The16
mmspecimensdemonstratesplittingfailurewhilethe12
mmbarsbondfailure.3.6
EffectofcastingpositionTherewasnosignificantdifferenceofbondstrengthduetothepositionofthebar(toporbottomcast)oncecrackingwasobserved,Fig.
15.Forcontrolspecimens,withnocorrosion,however,thebottomcastbarshadaslightlyhigherbondstressthanthetopcastbars.Theseobservationsareinagreementwithotherauthors[4,11,15,22].Itisgenerallyacceptedthatuncorrodedbottomcastbarshavesignificantlyimprovedbondcomparedtotopcastbarsduetothecorrosionproductsfillingthevoidsthatareoftenpresentundertopcastbarsasthecorrosionprogresses[14].Thecorrosionalsoactsasan‘a(chǎn)nchor’,similartotheribsondeformedbars,toincreasethebond.Overall,themeanvalueofbondstressforallbars(corrodedanduncorroded)locatedinthetopwerewithin1%ofthemeanbondstressofallbarslocatedinthebottomofthesection—forbothunconfinedandconfinedbars.Thisisprobablyduetothelevelofcover.Theresultsreportedpreviouslyareonspecimenswithonetimescover[14].However,atthreetimescoveritwouldbeanticipatedthatgreatercompactionwouldbeachievedaroundthetopcastbars.Thustheareaofvoidswouldbereducedandthustheeffectofthecorrosionproductfillingthesevoidsandincreasingthebondstrengthwouldbereduced.Fig.
15
Bondstressversusmeancrackwidthfor12
mmbars,topandbottomcastpositions,confinedspecimen4
Conclusions?
Arelationshipwasobservedbetweencrackwidthandbondstress.Thecorrelationwasbetterformaximumcrackwidthandbondstressthanformeancrackwidthandbondstress.?
Confinedbarsdisplayedahigherbondstressatthepointofinitialcrackingthanwherenocorrosionhadoccurred.Ascrackwidthincreasethebondstressreducedsignificantly.?
Unconfinedbarsdisplayedadecreaseinbondstressatinitialcracking,followedbyafurtherdecreaseascrackingincreased.?
Topcastbarsdisplayedahigherbondstressinspecimenswithnocorrosion.Oncecrackinghadoccurrednovariationbetweentopandbottomcastbarswasobserved.?
The12
mmbarsdisplayedhigherbondstressvaluesthan16
mmwithnocorrosion,controlspecimens,andatsimilarcrackwidths.?
Agoodcorrelationwasobservedbetweenbondstressanddegreeofcorrosionwasobservedatlowlevelsofcorrosion(lessthan5%).However,athigherlevelsofcorrosionnocorrelationwasdiscerned.Overalltheresultsindicatedapotentialrelationshipbetweenthemaximumcrackwidthandthebond.Resultsshownhereinshouldbeinterpretedwithcautionasthisvariationmaybenotonlyduetovariationsbetweenacceleratedcorrosionandnaturalcorrosionbutalsoduetothecomplexityofthecrackingmechanisminreality.References1.AlmusallamAA()Effectofdegreeofcorrosiononthepropertiesofreinforcingsteelbars.ConstrBuildMater15:361–368
2.AlmusallamAA,Al-GhataniAS,AzizAR,Rasheeduzzafar(1996)Effectofreinforcementcorrosiononbondstrength.ConstrBuildMater10(2):123–129
3.AlonsoC,AndradeC,RodriguezJ,DiezJM(1998)Factorscontrollingcrackingofconcreteaffectedbyreinforcementcorrosion.MaterStruct31:435–441
4.Al-SulaimaniGJ,KaleemullahM,BasunbulIA,Rasheeduzzafar(1990)Influenceofcorrosionandcrackingonbondbehaviorandstrengthofreinforcedconcretemember.ACIStructJ87(2):220–231
5.AndradeC,AlonsoC,MolinaFJ(1993)Covercrackingasafunctionofrebarcorrosion:Part1.Experimentaltest.MaterStruct26(9):453–464
6.AndradeC,AlonsoC,RodriguezJ,CasalJ,DiezJM(1995)Relationbetweencorrosionandcracking.InternalreportofBrite/EuramProjectBE-4062,C.E.C.
7.AndradeC,Alonso
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防設(shè)施檢測與維保服務(wù)合同5篇
- 2025年度安置房質(zhì)量保證合同書3篇
- 2025年水泥制品環(huán)保技術(shù)轉(zhuǎn)移合同3篇
- 2025年度高空墜落防護(hù)HSE施工安全協(xié)議3篇
- 二零二五年房產(chǎn)銷售代理與廣告宣傳協(xié)議3篇
- 二零二五年鮮活水產(chǎn)品運(yùn)輸與質(zhì)量監(jiān)管協(xié)議3篇
- 2025年度免租金停車場租賃合同模板
- 2025版棋牌室三方合作協(xié)議-創(chuàng)新管理與行業(yè)規(guī)范4篇
- 2025年污水處理站污水處理設(shè)施設(shè)備租賃與維修合同3篇
- 2025年度留學(xué)簽證擔(dān)保與資金證明服務(wù)合同3篇
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機(jī)跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
- 禮品(禮金)上交登記臺賬
- 普通高中英語課程標(biāo)準(zhǔn)詞匯表
- 北師大版七年級數(shù)學(xué)上冊教案(全冊完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
評論
0/150
提交評論