版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第十六章多元函數(shù)的極限與連續(xù)§1平面點(diǎn)集與多元函數(shù)1.判斷下列平面點(diǎn)集中哪些是開集、閉集、有界集、區(qū)域?并分別指出他們的聚點(diǎn)與界點(diǎn)。(1)[a,b)′[c,d);(2){(x,y)xy10};(3){(x,y)|xy=0};(4){(x,y)|y>x2}(5){(x,y)|x<2,y<2,x+y>2}(6){(,)|+=1或y=0,0#x1};xyxy22(7){(x,y)|x2+y2?1或y0,1#x2};(8){(x,y)|xy,?N+};(9){(x,y)|y=sin1};x解:(1)有界集、區(qū)域,其聚點(diǎn)為E={(x,y)|a#xb,c#yd}.(2)開集,聚點(diǎn)為E=R2,界點(diǎn)為{(x,y)|xy=0};(3)閉集,E={(x,y)|xy=0},界點(diǎn)為?EE={(x,y)|xy=0}.(4)區(qū)域,開集,其聚點(diǎn)為E={(x,y)|x2y},界點(diǎn)為{(x,y)|y=x2}.(5)有界集,區(qū)域,開集,其聚點(diǎn)為E={(x,y)|x#2,y2,2?xy},界點(diǎn)為{(x,y)x=2,0#y2{(x,y)|y=2,0#x2}{(x,y)|x+y=2,0#x2}(6)有界集,閉集,其聚點(diǎn)為E={(x,y)x2+y2=1或y=0,0#x1},界點(diǎn)為?EE。(7)有界集、閉集,其聚點(diǎn)為E={(x,y)|x2+y2?1或y0,1#x2};界點(diǎn)為?E{(x,y)|x2+y2=1或y=0,1#x2}.(8)閉集,其聚點(diǎn)是空集,界點(diǎn)為{(x,y)|x,y?z}.E={(x,y)|y=sin1,x>0}{(0,y)y1},界點(diǎn)為?EE.x(9)閉集2.試問集合{(x,y)|0<x-a<d,0<y-b<d}與集合{(x,y)|x-a<d,y-b<d},(x,y)(a,b)是否相同?解:不相同,第一個(gè)點(diǎn)集為第二個(gè)點(diǎn)集的子集。因?yàn)镋={(x,y)|x=a,0<x-a<d}{(x,y)|y=b,0<x-a<d}不屬于第一個(gè)點(diǎn)集,但包含第二個(gè)點(diǎn)集。3.證明:當(dāng)且僅當(dāng)存在各點(diǎn)互不相同的點(diǎn)列n{P}坦E,PPlimP=P時(shí),P是0,00nxnE的聚點(diǎn)。證明:設(shè)n{P}ìE,且互不相同,nP1P,因?yàn)閘imP=P,所以對xn"e>0,$N,00+時(shí),有P-P<e,即P?U(。Pe).故P為的聚點(diǎn)。E00;0nn反之,設(shè)P為聚點(diǎn),則由聚點(diǎn)的定義,對于e=1,$P吻(Pe;)E對;于E01101e=min(1r,P(P,)$),P吻UP(e;)E;且r(P,P),故P1P;作歸納假設(shè):已2012。0221022經(jīng)找到k個(gè)點(diǎn){P,P,……P}撾E,PU(P;e),其中。12ki0ie=min(1,r(P,P)),i=1,2,3……k.因?yàn)閞(P,P)<r(P,P)<……(rP,P),ii-100k-1010ik所以P…P…k2互P不相同。現(xiàn)在,對1,1e=min(k+1,r(P,P)),$P吻U(P,e)E使P,P……P互不相同,如此等。0k+10k+112k+1kk等,這樣就得到了互不相同的點(diǎn)列又由于n{P}坦E,PP,又由于nrPPn(,)£1,故00nlimP=P0.xn4.證明:閉域必為閉集。舉例說明反之不真。證明:設(shè)D為閉域,因?yàn)殚]域是開域連同邊界所成的點(diǎn)集,閉集E是E的所有聚點(diǎn)都屬于E,所以對"PD,情況1,當(dāng)P?D,D為開域TP是D的內(nèi)點(diǎn)TP必為D的內(nèi)點(diǎn);情況2:當(dāng)P味D剔D(zhuǎn)P為D的非孤立的界點(diǎn)TP為D的一個(gè)聚點(diǎn),從而得知D的一切點(diǎn)均為D的聚點(diǎn)。反之,不真。反例:EE={(x,y)|1?xy2?2或x2,0#y1},則的開域是2E={(x,y)|x2+y2=2},E的邊界是11?E{(x,y)x2+y2=1}{(x,y)x2+y2=2}.閉域E?E?E,又顯然E中的一111切點(diǎn)均為聚點(diǎn),且為E的全部聚點(diǎn),所以E為閉集,非閉域。5.證明:點(diǎn)列{P(x,y)}收斂于nP(x,y)的充要條件是limx=x和xn0000nnlimy=y。0xn證明:必要性:設(shè)limP=P,則對"e>0,$N>0,當(dāng)n>N時(shí),有P?(P,e),即00xnnr(P,P)=(x-x)2+(y-y)2<e,從而n0n0n0limx=x,limy=y.故P)x-#r(nx-#,nerP,ye0n0xnn00x00n充分性:設(shè)limx=x,lyim=y則對"e>0,N$>0當(dāng),n>N時(shí),有xn0xn0,x-x<e,y-y<e,從而P(x,y)?U(P(x,y);e)(方領(lǐng)域)n0n0nnn000所以limP=P.0xn6.求下列函數(shù)的值。輊arctan(x+y)2,求f(1+3,1-3);22(1)f(x,y)=犏犏arctan(x-y)臌2xy(2)f(x,y)=,求f(1,y);xx2+y2(3)f(x2+y2-xytanx),求f(tx,ty);y輊p犏解:(1)f(1+3,1-3)=(arctan1)2=犏犏4=.922arctan3p16犏犏3臌y2×2xy(2)f(1,y)=x=.xyx+y221+()2x(3)f(tx,ty)=t2x2+t2y2-t2xytanx=t2(x2+y2-xytanx).y7.設(shè)F(x,y)=lnxlny,證明:若u>0,v>0,則F(xy,uv)=F(x,u)+F(y,u)+F(y,v)+F(x,v).證:因?yàn)镕(x,y)=lnxlny,u>0,v>0,所以yF(xy,uv)=ln(xy)ln(uv)=(lnx+lny)(lnu+lnv)=lnxlnu+lnxlnv+lnylnu+lnylnv=F(x,u)+F(x,v)+F(y,u)+F(y,v).8.求下列各函數(shù)的定義域,畫出定義域的圖形,并說明這是何種點(diǎn)集;(1)(,)=x2+y2;(2)f(x,y)=fxy1;(3)f(x,y)xy;(4)22x+3y2x2-y2f(x,y)=1-x2+y2-1;(5)f(x,y)=lnx+lny;(6)f(x,y)+sin(x2+y2);z(7)f(x,y)=ln(y-x);(8)f(x,y)=e-(x2+y2);(9)f(x,y,z)=x2+y2+1;1(10)(,,)=---+R2xyz(R>r).)fxyz222x2+y2+z2-r2D={(x,y)|x貢y}(2)函數(shù)的定義域是無界開域2D=R-{(0,0)}(3)函數(shù)的定義域是無界閉集D={(x,y)|xy0}解:(1)函數(shù)的定義域?yàn)闊o界開集,(4)函數(shù)的定義域是無界閉集D={(x,y)|x31且y1}(5)函數(shù)的定義域是無界開域D={(x,y)|x>0且y>0}(6)由sin(x2+y2)0得2kp?x2y2?(2k1)p,(k=0,1,2,)于是函數(shù)的定義域是無界閉集D={(x,y)|2kp?x2y2?(2k1)p,k=0,1,2,}(7)函數(shù)的定義域是無界開域D={(x,y)|y>x}e(8)因?yàn)闊o論,取任何實(shí)數(shù)均不會使=0,所以函數(shù)的定義域是整個(gè)-1(x+y)22xy平面R,它是即開又閉的無界區(qū)域.2(9)函數(shù)的定義域是整個(gè)三維空間R,它是即開又閉的無界區(qū)域.3(10)正數(shù)的定義域是有界區(qū)域D={(x,y)|r2<x2+y2+zR2}2§2二元函數(shù)的極限1.試求下列極限(包括非正常極限):xy22(1)lim(x,y)?(0,0)x2+y2;1+x2+y2(2)lim(x,y)?(0,0);x2+y2x2+y2(3)lim(x,y)?(0,0);1+x2+y2-1(4)lim(x,y)?(0,0)xxy+1;+y441(5)lim(x,y)?(1,2);2x-y1(6)lim(x+y)sin(x,y)?(0,0)x+y22sin(x2+y2);+y(7)lim(x,y)?(0,0)x22(x,y)1(0,0)時(shí),0£x2y2xy解:(1)當(dāng)£.x2+y22xy22而limxy=0,所以lim=0.x(x,y)?(0,0)2+y2(x,y)?(0,0)(2)因?yàn)閘im(x2+y2)=0,所以,原式=+.(x,y)?(0,0)(3)因?yàn)閤2+y21+x2+y2-1=x2+y2(1xy1)=1+x2+y2+1,+++221+x+y-122所以,原式=lim(1+x2+y2+1=2)(x,y)?(0,0)+y4xy+1=++y4(4)因?yàn)閤+y4?0,limx0,所以lim(x,y)?(0,0)x4xy+144x(5)因?yàn)閘im(2x-y)=0,所以,原式=+(x,y)?(1,2)(6)當(dāng)(x,y)1(0,0)時(shí),sin1?1,lim(xy)=0,故+y4x4(x,y)?(0,0)1lim(x+y)sin(x,y)?(0,0)=0x2+y2(7)limsin(x2+y2)=1x2+y2(x,y)?(0,0)2.討論下列函數(shù)在點(diǎn)(0,0)的重極限與累次極限:y2(1)f(x,y)=(3)f(x,y)=;(2)f(x,y)=(x+y)sin1sin1xyx2+y2x2y2(4)(,)=x3+y3fxyx2y2+(x-y)2x2+y(5)f(x,y)=ysin1x(6)f(x,y)=x2y2x3+y3(7)f(x,y)=ex-eysinxy解:(1)當(dāng)動(dòng)點(diǎn)p(x,y)沿直線y=kx趨于點(diǎn)(0,0)時(shí),有y2k2k2,其極限值依賴于k,因此,01+k21+k2lim=lim=(x,y)(0,0)x2+y2xy2lim=1(x,y)?(0,0)x2+y2(2)因?yàn)??(xy)sin1sin1?xy0,(x,y)(0,0),所以xylim(x+y)sin1sin1=0xy(x,y)?(0,0)1k北1,2,,y0時(shí),(x+y)sin1sin1的極限不存在,因此xy當(dāng)x?kp,limlimf(x,y)不存在,同法可得limlimf(x,y)x0y0y0x0(3)當(dāng)沿y=x時(shí),有l(wèi)imf(x,y)=limf(x,x)=1,當(dāng)沿y=0時(shí),有(x,y)(0,0)x0limlimf(x,y)=lim0=0y02y0x0ylimf(x,y)=limf(x,0)=0,(x,y)(0,0.)因此limfxy(不,存)在,x?0(xy,?)(0,0limflixm=y(0,=)lim0,x2x0y0x0(4)當(dāng)沿=時(shí),有l(wèi)imf(x,y)=lim2x3x?0x2+x=0,當(dāng)沿y=-x2+x3時(shí),有yx(x,y)(0,0)limf(x,y)=lim[1+x3(x-1)3]=1,因此limfxy(不,存)在,(x,y)(0,0)x0(xy,?)(0,0limlimx3+y3=limx=0,limlimx3+y3=limy=02x2+yx+y2x0y0x0y0x0y0(5)因?yàn)?#siny0,(x,y)(0,0),所以limysin1=0,1yxx(x,y)?(0,0)limlimysin1=lim0=0,limlimysin1不存在xxx0y0x0y0x0(6)當(dāng)沿=時(shí),有l(wèi)imf(x,y)=limx4=0,當(dāng)沿y=-x+x2時(shí),有yx2x3x0(x,y)(0,0)x4(x-1)2=limx2-2x+1=1,因此limf(x,y)不limf(x,y)=limx0x3[1+(x-1)3)x2-3x+33(x,y)(0,0)x0(x,y)?(x,y)x2y2x2y2存在。limlim=lim0=0,limlim=0x0y0x3+y3(7)當(dāng)沿的兩個(gè)累次極限均不存在。y0x0x3+y3x0ex-eyy=0時(shí),limf(x,y)不存在。所以lim不存在。f(x,y)sinxy(x,y)?(x,y)(x,y)?(0,0)3.證明`:若1。limf(x,y)存在且等于A;2y在b的某臨域內(nèi),存在有(x,y)?(0,0)limf(x,y)=j(y),則limlimf(x,y)=Ax?aybxa證明:由條件知,"e>0,存在1d>0,當(dāng)x-a<d,y-b<d,且(x,y)1(a,b)時(shí),11有f(x,y)-A<e(1)y在b的某臨域è(b,d)內(nèi)時(shí)由條件知,當(dāng),limf(x,y)=j(y)存在,令2x?ad=min{d,d},當(dāng)0<y-b<d時(shí),在(1)式中令x?a,得j(y)-Ae,于是12limj(y)=A,即limlimf(x,y)=Ay?bybxax2y4.試應(yīng)用e-d定義證明lim(x,y)?(0,0)x2+y2=0xyxy2證明:當(dāng)(,)1(0,0)時(shí),=xxy2,因此,對任給e>0,取=,dexx+y2x2+y2xy2x2y=0則當(dāng)20<x+y2<d時(shí),-0<e,所以limx+y2(x,y)?(0,0)x+y2225.?dāng)⑹霾⒆C明:二元函數(shù)的唯一性定理,局部有界性定理與局部保號性定理。(1)唯一性定理:若極限limf(x,y)存在,則此極限是唯一的(x,y)?(x0,y0)證明:設(shè)A、B都是()當(dāng)p(x,y)?p(xy)時(shí)的極限,則對任給的e>0,fx00,0存在d>0,當(dāng)(x,y)穩(wěn)(pd)D時(shí),f(x,y)-A<e,fx(y,-)B<e從.而。0,22A-B?f(x,y)A+f(,xy)-B<e由.e的任意性得A=B(2)局部有界性:若limf(x,y)存在,則存在p(x,y)的空心臨域000(x,y)?(x0,y0)è0(pd),使(,)在è0(pd)?D上有界0,fxy0,證明:設(shè)limf(x,y)=A,則對e=1,存在d>0,對一切(x,y)?(x0,y0)(x,y)穩(wěn)(pd)D有f(x,y)-A<1,即f(x,y)<A+100,(3)局部保號性:若limf(x,y)=A>0(或<0),則對任意整數(shù)p(x,y)穩(wěn)r<-A),存在d>0,對一切(pd,)D,有f(x,y)>r>0(或00f(x,y)<-r<0)A>0,對任何r<A(或(x,y)?(x0,y0)證明:設(shè)r?(0,A),取e=A-r,則存在d>0,對一切p(x,y)穩(wěn)(pd)D,有f(x,y)-A<e=A-r,于是f(x,y)>A-(A-r)=r。00,對于A<0的情況可類似證明以上證明中D是函數(shù)的定義域§3二元函數(shù)的連續(xù)性1討論下列函數(shù)的連續(xù)性(1)f(x,y)=tan(x2+y2);解:(1)函數(shù)f(x,y)在D={(x,y)|o?xy2<}{(x,y)|kp-p<x2+y2<kp+p,k=1,2,}上連p2222續(xù).在xy平面的圓周x2+y2=kp+p2,k=0,1,2,上間斷.[](2)f(x,y)=x+y;]解(2)函數(shù)f(x,y)=x+y;在直線x+y=k,k=0北,1,2,上間斷.在D={(x,y)|k<x+y<k+1,k=0,北1,2,}上連續(xù).事實(shí)上,對k<x+y<k+1,當(dāng)d>0充分小時(shí),"(x+y)先(p,d)有k<x+y<k+1,于000是f(x,y)漢kf(x+y).從而limf(x,y)=f(x+y),即f(x)在D上連0000(x,y)?(x0y0)續(xù)ì?sinxy?,y10,(3)f(x+y)=??í?x+y22??0,y=0;??解(3)在E={(x,y)|x撾R,yR且y0}內(nèi),f(x,y)=sinxy處處連續(xù).1y在E={(0,0)}上,因?yàn)閟inxy£x,所以limf(x,y)=0=f(0,0)即f(x,y)在2y(x,y)?(0,0)點(diǎn)(0,0)連續(xù).在E={(x,0)|x0}上,因?yàn)閘imf(x,y)?0f(x,0),所以f(x,y)在E上303(x,y)?(x0.0)間斷.在D={(x,y)|x撾R,yR且y0}{(0,0)}上連續(xù)ì?sinxy?,x2+y0?2?(4)f(x,y)=íx2+y2???0,x2+y2=0??sinxy解(4)當(dāng)x2+y2=0時(shí),f(x,y)=在點(diǎn)(x,y)連續(xù).當(dāng)x2+y2=0時(shí),x+y22sinxy因?yàn)椋yx,于是limf(x,y)=0=f(0,0),即f(x,y)在(x,y)?(0,0)x2+y2x+y22點(diǎn)(0,0)連續(xù).故(,)在整個(gè)平面R上連續(xù)fxy2?ì0,(5)f(x,y)=í????y,設(shè)(x,y)?R2,則00當(dāng)為有理數(shù)時(shí),ì?y-y?í?f(x,y)-f(x,y)=f(x,y)-y=0000?y?0當(dāng)為無理數(shù)時(shí)ì?y?í?f(x,y)-f(x,y)=f(x,y)=0000?于是limf(x,y)=f(x,y).當(dāng)且僅當(dāng)y=0時(shí)成立.所以,f(x,y)僅在000(x,y)?(x0y0)D={(x,y)|y=0}上連續(xù)2.?dāng)⑹霾⒆C明二元連續(xù)函數(shù)的局部保號性證:設(shè)f(x,y)>0,對任何r,0<r<f(x,y),取e=f(x,y)-r,因?yàn)閒(x,y).。000000在點(diǎn)p0(x0,y0)連續(xù),所以存在d>0,使當(dāng)p(x,y?)(pd,時(shí)),有0f(x,y)-f(x,y)<e=f(x,y)-r,從而f(x,y)>f(x,y)-e=r>0.000000對f(x,y)<0的情況可類似證明00ì?x??,x2+y02?22?(,)=í(+)pxy3.設(shè)fxy(p>0)試討論它在點(diǎn)(0,0)處的連續(xù)性.??????0,xy0+=22x2+y2(x2+y2)1xx22-p.當(dāng)解因?yàn)??(x+y2)p(x2+y2)p(x2+y2)p2p<(x2+y2)12-p=0,121-p>0,即時(shí),lim2(x,y)?(0,0)x(x,y)?(0,0)(x2+y2)p所以lim=0=f(0,0)即f(x,y)在點(diǎn)(0,0)處連續(xù).ì?1,p=1,???x2limf(x,y)=lim=í1x??????當(dāng)p3時(shí),因?yàn)?,2p(x,y)(0,0)x0?,p22y=o所以limf(x,y)?0f(0,0),即f(x,y)在點(diǎn)(0,0)不連續(xù).(x,y)?(0,0)11f(x,y)在點(diǎn)(0,0)處連續(xù),而f(x,y)在點(diǎn)(0,0)處p<時(shí),p3時(shí),2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中歷史 第一單元 從“朕即皇帝”到“主權(quán)在民”第1節(jié) 歐洲的君主專制教案 岳麓版選修2
- 2024秋五年級語文上冊 第四單元 15 小島教案 新人教版
- 2023六年級數(shù)學(xué)上冊 6 百分?jǐn)?shù)教案 新人教版
- 湖南省衡陽市高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.3 函數(shù)的基本性質(zhì) 1.3.1 單調(diào)性與最大(?。┲到贪?新人教A版必修1
- 八年級地理上冊 第二章 第三節(jié) 氣候與人類活動(dòng)教案1 中圖版
- 2024-2025學(xué)年高中化學(xué) 第一章 物質(zhì)結(jié)構(gòu)元素周期律 第二節(jié) 元素周期律第3課時(shí)教案1 新人教版必修2
- 租用家庭氧氣瓶合同(2篇)
- 棕櫚油供銷合同(2篇)
- 銀行貸款居間合同(2篇)
- 人教版墨梅課件
- 華為鴻蒙系統(tǒng)
- 中國城市代碼對照表
- 黑水虻處理餐廚垃圾與畜禽糞便的資源化循環(huán)利用項(xiàng)目可行性研究報(bào)告
- 大學(xué)生勞動(dòng)教育完整PPT全套教學(xué)課件
- 國網(wǎng)基建各專業(yè)考試題庫大全-計(jì)劃專業(yè)(考題匯總)
- 概率論與數(shù)理統(tǒng)計(jì)智慧樹知到答案章節(jié)測試2023年中國農(nóng)業(yè)大學(xué)
- 六頂思考帽與創(chuàng)新思維訓(xùn)練
- 關(guān)于小學(xué)科學(xué)大單元教學(xué)設(shè)計(jì)的思考
- 模具加工計(jì)劃進(jìn)度表-05
- 數(shù)學(xué)新課程標(biāo)準(zhǔn)的核心概念有哪些?結(jié)合教學(xué)實(shí)踐談?wù)勀愕恼J(rèn)識
- 紅樓夢5000字論文
評論
0/150
提交評論