版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐2.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.3.按如圖所示的方法折紙,下面結(jié)論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個4.有15位同學參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學進入決賽.某同學知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差5.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<16.下列命題是真命題的是()A.過一點有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形7.的相反數(shù)是()A. B. C.3 D.-38.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁9.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.110.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:2sin245°﹣tan45°=______.12.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____13.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.14.釣魚島周圍海域面積約為170000平方千米,170000用科學記數(shù)法表示為______.15.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.16.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.三、解答題(共8題,共72分)17.(8分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當△ABO是任意三角形時,設∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.18.(8分)已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.19.(8分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設點P的橫坐標為m.(1)求此拋物線所對應的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當四邊形PEDF為平行四邊形時,求m的值.20.(8分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目
頻數(shù)(人數(shù))
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?21.(8分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.22.(10分)計算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);23.(12分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.24.如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最???如果存在,求出點的坐標;如果不存在,說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.2、B【解析】
根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.3、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.4、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.5、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.6、D【解析】
根據(jù)真假命題的定義及有關性質(zhì)逐項判斷即可.【詳解】A、真命題為:過直線外一點有且只有一條直線與已知直線平行,故本選項錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項正確.故選D.【點睛】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質(zhì)是解答本題的關鍵,當命題的條件成立時,結(jié)論也一定成立的命題叫做真命題;當命題的條件成立時,不能保證命題的結(jié)論總是成立的命題叫做假命題.熟練掌握所學性質(zhì)是解答本題的關鍵.7、B【解析】先求的絕對值,再求其相反數(shù):根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點到原點的距離是,所以的絕對值是;相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.因此的相反數(shù)是.故選B.8、D【解析】
根據(jù)方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩(wěn)定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩(wěn)定性越大.9、D【解析】
過A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線是解題的關鍵.10、D【解析】根據(jù)“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、0【解析】原式==0,故答案為0.12、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).13、1【解析】
根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.14、【解析】解:將170000用科學記數(shù)法表示為:1.7×1.故答案為1.7×1.15、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.16、【解析】
設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質(zhì)的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.三、解答題(共8題,共72分)17、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關鍵.18、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【解析】
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據(jù)平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,19、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;(1)根據(jù)自變量與函數(shù)值的對應關系,可得F點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據(jù)平行四邊形的對邊相等,可得關于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1,∴C(0,1).設BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當m=1時,線段PF與DE重合,m=1(不符合題意,舍).當m=2時,四邊形PEDF為平行四邊形.考點:二次函數(shù)綜合題.20、(1)24,1;(2)54;(3)360.【解析】
(1)根據(jù)選擇乒乓球運動的人數(shù)是36人,對應的百分比是30%,即可求得總?cè)藬?shù),然后利用百分比的定義求得a,用總?cè)藬?shù)減去其它組的人數(shù)求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全???cè)藬?shù),然后利用總?cè)藬?shù)乘以對應的百分比求解.【詳解】(1)抽取的人數(shù)是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全校總?cè)藬?shù)是120÷10%=1200(人),則選擇參加乒乓球運動的人數(shù)是1200×30%=36
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年會部門經(jīng)理發(fā)言稿
- 測繪服務投標方案(技術標)
- 達英-35對未育女性人工流產(chǎn)術后子宮內(nèi)膜的影響
- 工作標兵先進事跡材料(10篇)
- 初級會計實務-初級會計《初級會計實務》模擬試卷681
- 初級會計實務-《初級會計實務》??荚嚲?47
- 城市復雜環(huán)境低成本北斗-GNSS高精度單車定位技術研究
- 2024年中國熱處理行業(yè)深度分析、投資前景、趨勢預測報告(智研咨詢)
- 補陽還五湯聯(lián)合杵針治療腰椎術后殘留神經(jīng)根癥狀的臨床療效觀察
- 二零二五年度廢棄包裝物處理及資源化利用合同3篇
- 沖渣池施工方案
- 第4章操作臂的雅可比
- 人教版初中英語八年級下冊 單詞默寫表 漢譯英
- 學校網(wǎng)絡信息安全管理辦法
- 中國古代文學史 馬工程課件(下)21第九編晚清文學 緒論
- 2023年鐵嶺衛(wèi)生職業(yè)學院高職單招(語文)試題庫含答案解析
- 2205雙相不銹鋼的焊接工藝
- 2023年全國高中數(shù)學聯(lián)賽江西省預賽試題及答案
- 外科學-第三章-水、電解質(zhì)代謝紊亂和酸堿平衡失調(diào)課件
- 城市旅行珠海景色介紹珠海旅游攻略PPT圖文課件
- 小學 三年級 科學《觀測風》教學設計
評論
0/150
提交評論