四川省遂寧市名校2023年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
四川省遂寧市名校2023年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
四川省遂寧市名校2023年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
四川省遂寧市名校2023年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
四川省遂寧市名校2023年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在6×4的正方形網(wǎng)格中,△ABC的頂點均為格點,則sin∠ACB=()A. B.2 C. D.2.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣43.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值4.在平面直角坐標(biāo)系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或65.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)6.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(

)A.30°B.45°C.50°D.60°7.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.168.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.29.《語文課程標(biāo)準(zhǔn)》規(guī)定:7﹣9年級學(xué)生,要求學(xué)會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學(xué)年閱讀兩三部名著.那么260萬用科學(xué)記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×10410.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm11.下列實數(shù)中是無理數(shù)的是()A. B.2﹣2 C.5. D.sin45°12.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小邊的長是2cm,則它的最大邊的長是_____cm.14.函數(shù)的圖象不經(jīng)過第__________象限.15.分式方程=1的解為_____16.如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.17.如圖,圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為.18.將拋物線y=(x+m)2向右平移2個單位后,對稱軸是y軸,那么m的值是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.20.(6分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補(bǔ)充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A,B兩班的概率.21.(6分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最???若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.22.(8分)如圖,為的直徑,,為上一點,過點作的弦,設(shè).(1)若時,求、的度數(shù)各是多少?(2)當(dāng)時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.23.(8分)“六一”兒童節(jié)前夕,某縣教育局準(zhǔn)備給留守兒童贈送一批學(xué)習(xí)用品,先對紅星小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補(bǔ)全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學(xué)共有60個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.24.(10分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設(shè)點B的坐標(biāo)為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.25.(10分)如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.26.(12分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|27.(12分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當(dāng)∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

如圖,由圖可知BD=2、CD=1、BC=,根據(jù)sin∠BCA=可得答案.【詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握正弦函數(shù)的定義和勾股定理.2、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.3、B【解析】

解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.4、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時,t-1=6,解得t=7;當(dāng)t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.5、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進(jìn)入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分?jǐn)?shù)互不相同,第5的成績是中位數(shù),要判斷是否進(jìn)入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.6、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.7、B【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大小;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.8、B【解析】

由折疊的性質(zhì)可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關(guān)鍵.9、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當(dāng)原數(shù)絕對值時,n是正數(shù);當(dāng)原數(shù)的絕對值時,n是負(fù)數(shù).【詳解】260萬=2600000=.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、C【解析】

由∥可得△ADE∽△ABC,再根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點:相似三角形的判定和性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.11、D【解析】A、是有理數(shù),故A選項錯誤;B、是有理數(shù),故B選項錯誤;C、是有理數(shù),故C選項錯誤;D、是無限不循環(huán)小數(shù),是無理數(shù),故D選項正確;故選:D.12、B【解析】

根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】

根據(jù)在△ABC中,∠A:∠B:∠C=1:2:3,三角形內(nèi)角和等于180°可得∠A,∠B,∠C的度數(shù),它的最小邊的長是2cm,從而可以求得最大邊的長.【詳解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180∴∠A=30∵最小邊的長是2cm,∴a=2.∴c=2a=1cm.故答案為:1.【點睛】考查含30度角的直角三角形的性質(zhì),掌握30度角所對的直角邊等于斜邊的一半是解題的關(guān)鍵.14、三.【解析】

先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進(jìn)而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當(dāng),時,函數(shù)圖象經(jīng)過一、二、四象限.15、x=0.1【解析】分析:方程兩邊都乘以最簡公分母,化為整式方程,然后解方程,再進(jìn)行檢驗.詳解:方程兩邊都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,檢驗:當(dāng)x=0.1時,x﹣1=0.1﹣1=﹣0.1≠0,當(dāng)x=1時,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案為:x=0.1點睛:本題考查了解分式方程,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.16、1【解析】

連接OB,由矩形的性質(zhì)和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.17、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.18、1【解析】

根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【點睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙?,通過證明四邊形是平行四邊形達(dá)到上述目的.20、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統(tǒng)計圖中百分?jǐn)?shù),進(jìn)而求出B班參賽作品數(shù)量;(2)利用C班提供的參賽作品的獲獎率為50%,結(jié)合C班參賽數(shù)量得出獲獎數(shù)量;(3)分別求出各班的獲獎百分率,進(jìn)而求出答案;(4)利用樹狀統(tǒng)計圖得出所有符合題意的答案進(jìn)而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數(shù)量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點:1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.21、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為

.【解析】

(1)根據(jù)勾股定理解答即可;(2)設(shè)AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設(shè)AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質(zhì)、勾股定理的應(yīng)用、相似三角形的判定和性質(zhì)等知識,知識點較多,難度較大,解答本題的關(guān)鍵是掌握設(shè)未知數(shù)列方程的思想.22、(1),;(2)見解析;(3).【解析】

(1)連結(jié)AD、BD,利用m求出角的關(guān)系進(jìn)而求出∠BCD、∠ACD的度數(shù);

(2)連結(jié),由所給關(guān)系式結(jié)合直徑求出AP,OP,根據(jù)弦CD最短,求出∠BCD、∠ACD的度數(shù),即可求出m的值.

(3)連結(jié)AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關(guān)系式,得出比例關(guān)系式結(jié)合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結(jié)、.是的直徑,又,,(2)如圖2,連結(jié).,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結(jié)、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點睛】本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系和圓周角定理等知識,掌握圓周角定理以及垂徑定理是解題的關(guān)鍵.23、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】

(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級數(shù)是:2÷2.5%=16(個).則人數(shù)是8名的班級數(shù)是:16﹣1﹣2﹣6﹣2=5(個).條形統(tǒng)計圖補(bǔ)充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學(xué)生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學(xué)生中共有留守兒童1名.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.也考查了平均數(shù)、中位數(shù)和眾數(shù)以及用樣本估計總體.24、(2)(2)7或2.【解析】試題分析:(2)根據(jù)反比例函數(shù)k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數(shù)解析式為y=;(2)分類討論:當(dāng)以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數(shù)圖象上點的坐標(biāo)特征確定M點坐標(biāo)為(2,6),則AB=AM=6,所以t=2+6=7;當(dāng)以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,根據(jù)正方形的性質(zhì)得AB=BC=t-2,則C點坐標(biāo)為(t,t-2),然后利用反比例函數(shù)圖象上點的坐標(biāo)特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數(shù)解析式為y=;(2)當(dāng)以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標(biāo)為(2,6),∴AB=AM=6,∴t=2+6=7;當(dāng)以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,則AB=BC=t-2,∴C點坐標(biāo)為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數(shù)y=的圖象上時,t的值為7或2.考點:反比例函數(shù)綜合題.25、樹高為5.5米【解析】

根據(jù)兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數(shù)據(jù)計算即得BC的長,由AB=AC+BC,即可求出樹高.【詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實際問題中整理出相似三角形的模型.26、-4【解析】分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論