湖南省衡陽市耒陽市正源學(xué)校2023年高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
湖南省衡陽市耒陽市正源學(xué)校2023年高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
湖南省衡陽市耒陽市正源學(xué)校2023年高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
湖南省衡陽市耒陽市正源學(xué)校2023年高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
湖南省衡陽市耒陽市正源學(xué)校2023年高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則()A. B.C. D.2.已知函數(shù),則()A.1 B.2 C.3 D.43.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1285.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.6.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.8.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.49.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}10.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.11.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.12.在中,,,,則邊上的高為()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點(diǎn),A為橢圓Г的上頂點(diǎn),延長AF2交橢圓Г于點(diǎn)B,若為等腰三角形,則橢圓Г的離心率為___________.14.在直角三角形中,為直角,,點(diǎn)在線段上,且,若,則的正切值為_____.15.設(shè)實(shí)數(shù),若函數(shù)的最大值為,則實(shí)數(shù)的最大值為______.16.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值18.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.19.(12分)對于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.20.(12分)已知函數(shù),.(1)若時(shí),解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.21.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點(diǎn),為棱上的一點(diǎn).(1)證明:面面;(2)當(dāng)為中點(diǎn)時(shí),求二面角余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

當(dāng)時(shí),最多一個(gè)零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個(gè)零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個(gè)零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個(gè)零點(diǎn);根據(jù)題意函數(shù)恰有3個(gè)零點(diǎn)函數(shù)在上有一個(gè)零點(diǎn),在,上有2個(gè)零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類問題,不少考生會(huì)一籌莫展.由于方程中涉及兩個(gè)參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.2、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.3、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.4、C【解析】

根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.6、B【解析】

分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.7、A【解析】

分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.8、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.9、A【解析】

解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.10、D【解析】

連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、D【解析】

根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、C【解析】

結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得等腰三角形的兩條相等的邊,設(shè),由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關(guān)系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設(shè)|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設(shè)∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【點(diǎn)睛】此題考查橢圓的定義及余弦定理的簡單應(yīng)用,屬于中檔題.14、3【解析】

在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點(diǎn)睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.15、【解析】

根據(jù),則當(dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因?yàn)?,又?dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由等價(jià)于,令,,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.16、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開口向上,對稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號成立.綜上所述,的最大值為18.故答案為:18【點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時(shí),可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時(shí),取最大值,此時(shí),【點(diǎn)睛】這個(gè)題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點(diǎn)到極點(diǎn)的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個(gè)是極徑,一個(gè)是t的幾何意義,其中極徑多數(shù)用于過極點(diǎn)的曲線,而t的應(yīng)用更廣泛一些.18、(1);(2)【解析】

(1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因?yàn)楹瘮?shù)定義域?yàn)?,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時(shí),有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時(shí),等號成立【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立,則成等比數(shù)列,設(shè)公比為,驗(yàn)證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時(shí),由()可得:時(shí),由()可得:,可得,同理可證成等比數(shù)列,數(shù)列是等比數(shù)列【點(diǎn)睛】本題是一道數(shù)列的新定義題目,考查了等比數(shù)列的性質(zhì)、通項(xiàng)公式等基本知識,考查代數(shù)推理、轉(zhuǎn)化與化歸以及綜合運(yùn)用數(shù)學(xué)知識探究與解決問題的能力,屬于難題.20、(1)(2)【解析】

(1)零點(diǎn)分段法,分,,討論即可;(2)當(dāng)時(shí),原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時(shí),,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時(shí),由得,即,故得,又由題意知:,即,故的范圍為.【點(diǎn)睛】本題考查解絕對值不等式以及不等式能成立求參數(shù),考查學(xué)生的運(yùn)算能力,是一道容易題.21、(1)證明見解析(2)【解析】

(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論