




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——單片機外文文獻
BuildingServ.Eng.Res.Technol.31,1(2023)pp.39–55
RobustMPCfortemperaturecontrolofair-conditioningsystemsconcerningonconstraintsandmultitypeuncertainties
XinhuaXua,PhDShengweiWangaPhDMASHRAECEngandGongshengHuangbPhDa
DepartmentofBuildingServicesEngineering,theHongKongPolytechnicUniversity,Kowloon,HongKongb
DivisionofBuildingScienceTechnology,CityUniversityofHongKong,Kowloon,HongKong
Thispaperpresentsarobustmodel-basedpredictivecontrol(MPC)strategyfortemperaturecontrolofanair-conditioningsystem,whichconsistsofmultiplelocal-loopprocessesandeachprocesssuffersfromdifferentdynamicsuncertaintiesorvariations.Whenanappropriatesamplingperiodischosentodiscretisethesystemforcomputercontrol,astate-spacediscretemodelwithanuncertaintypolytopeisdevelopedtodescribethemixinguncertaintiesofthesetypeofsystems.Themainbenefitoftheproposeddescriptionisthatrobustmodelpredictivecontrolcanbeeasilyusedtodesignarobustcontrollerforsuchasystemwhiletakingaccountofconstraintsassociatedwiththissystem.Alinearmatrixinequality-basedMPCalgorithmisemployedforcontroldesign.Casestudywasconductedonadynamicsimulationplatformofanair-conditioningsystem,whichevaluatedthedevelopedstrategyinvarioussimulationtestsbycomparingwiththeconventionalPIDcontrol.Resultsdemonstratedthatthedevelopedstrategyisabletodealwithconstraintsandallowsstableandrobustcontrolwhilemaintainingacceptablethermalcomfort.Althoughthestrategyisillustratedandvalidatedusingaconstantairvolumeair-conditioningsystem,itcanbeappliedtootherconstraintHVACprocessessufferingfromsimilaruncertainties.
Practicalapplications:Themainbenefitofthedevelopedstrategy(includingtheproposeddescriptionandtheadoptedrobustcontrolalgorithm)forpracticalapplicationisthatuncertaintiesandconstraintscanbedealtwithsimultaneouslyinoneframework.ConstraintsinHVACsystemsexistduetotheapplicationofactuators,forexample,theratelimitconsideredinthepaper.Takingaccountofconstraintsisusefultopreventunnecessarydamagestoequipmentsandmaintainthesystemoperatinginasafemode.Mostimportantly,thecontrolobjectivescanbeachievedinaconstraintmanner.Theconsiderationofuncertainties,probablyduetothechangesofoperatingenvironment,isusefultoreleasetheworkofaccuratemodellingofHVACprocessesandonlinetuningofcontrollers.
1Introduction
Currentaddress:DepartmentofBuildingEnvironmentServicesEngineering,SchoolofEnvironmentalScienceEngineering,HuazhongUniversityofScienceTechnology,Wuhan,China.
Addressforcorrespondence:GongshengHuang,DivisionofBuildingScienceTechnology,CityUniversityofHongKong,Kowloon,HongKong.
E-mail:gongsheng.huang@.hk
Moderncommercialandofficebuildingsarealwaysequippedwithair-conditioningsys-temsprovidingcomfortableenvironmentforoccupants.Variable-air-volume(VAV)andconstant-air-volume(CAV)air-conditioningsystemarecurrentlythetwotypicalprocesseswidelyequippedincommercialandofficebuildings.WhetherinVAVorCAVsystems,
10.1177/0143624409352420
TheCharteredInstitutionofBuildingServicesEngineers2023
XXuetal.
(LMI)-basedMPC16wasemployedtodesignarobustcontroller.
Inthispaper,atypicalbutmoresophisti-catedconstraintsystemisconsidered,whichconsistsofmorethanoneconstraintprocess.Eachprocesscanbedescribedusingafirst-orderplustimedelaymodel,butsuffersfromdifferentdynamicsuncertaintiesorvariations.Whenanappropriatesamplingperiodischosentodiscretisethesystemforcomputercontrol,anuncertaintypolytopeisdevelopedtodescribethemixinguncertaintiesofthistypeofsystems.ThemainbenefitoftheproposeddescriptionisthattherobustcontrolschemedevelopedinHuangetal.15canbeeasilyusedtodesignarobustcontrollerforsuchasystem.Asanexample,aCAVair-conditioningsystemisusedtoillustratetheprocedureofusingoneuncertaintypoly-topetodescribedifferentuncertaintiesasso-ciatedwithdifferentprocesses.ThisisbecauseatypicalCAVair-conditioningsystemconsistsofnotonlytheAHUprocessbutalsotheconditionedroomtemperatureprocess,asshowninFigure1.TheAHUprocessmainlysuffersfromprocess-gainandtime-delayvari-ation(typeIuncertainties),whiletheroomtemperatureprocessmainlysuffersfrom
41
process-gainandtime-constantvariations(typeIIuncertainties).Casestudiesshowthattheproposedstrategy,includingtheuncertaintydescriptionandthecontrollerdesign,canachieveagoodrobustnesscom-paredwithaconventionalPIcontrolmethod.Thisismainlybecauseconstraintsanddiffer-enttypesofuncertaintiesaredealtwithinastraightforwardmanner.2
DynamicmodellingoftheCAVair-conditioningsystem
ThemaincomponentsofaCAVair-conditioningsystemarethecoolingcoilandtheconditionedroomincludingtheairduct.TheglobaldynamicsofthesystemcanbedescribedasshowninFigure2andbeformulatedby:
y2s
G1sG2sus
1
wherey2isthereturnairtemperature(usuallyrepresentingtheroomairtemperature),uisthecontrolsignaldenotingtheopennessofthewatervalve,Gistransferfunctionandthesubscript1and2denotesthetransfer
Figure1CAVsystemanditscontrolschematicdiagram
42RobustMPCfortemperaturecontrol
Figure2SchematicofthecontrolprocessofaCAVair-conditioningsystem
functiondescribingthedynamicsofthecool-ingcoilsubsystemandtheconditioningroomsubsystem,respectively.2.1
DynamicmodellingoftheCAVcoolingcoilprocess
Thecoolingcoildynamicscanbeapproxi-matedbyafirst-orderplustimedelaymodel11
y1sK1
G1se1sus1T1s
2
DynamicmodellingoftheCAV-conditionedroomtemperatureprocess
TheconditionedroomisoftenmodelledasEquation(4)basedonasimpleenergybalancefortheroomair.ItcanberewrittenasEquation(5)forthecontrolpurpose.ByperformingLaplacetransformonEquation(5)withtheroomairtemperatureandsupplyairtemperatureasvariables,theroomtrans-ferfunctionGroomcanbeachievedas(Equations(6)and(7)):Vracpa
dy2
cpamsy1y2dtX
fqgainAUiy2
2.2
wherey1isthesupplyairtemperature,K1,T1
and1aretheprocessgain,timeconstantandtimedelay,respectively.Steptestsareusedtocalculatetheprocessparameters.11Itisfoundthattheprocessdynamicsvarieswithrespecttotheoperatingenvironment,17suchastheinletairtemperature,thechilledwaterflowrateinthecoil,etc.Inthisstudy,thedynamicsuncertaintiesofthecoolingprocessaredescribedbyconsideringtheprocessgainandthetimedelayinacertainrange,whilethetimeconstantkeepsconstant,asinUnderwood.11Thedynamicsvariationsarerepresentedas:
LUU
and3K12KL,K21,1111wherethesuperscriptsLandUindicatethe
upperlimitandthelowerlimit,respectively.TheuncertaintiesdescribedbyEquation(3)aretitledastypeIuncertaintiesinthispaperinordertodistinguishwithtypeIIuncertainties.
4
Xdy2
VracpaAUiy2cpams
dtX
fqgaincpamsy1AUi
y2sKr
y1s1Trs
5
Grooms
6
Kr
cpams
,
cpamsAUi
7
Vracpa
Tr
cpamsAUi
44RobustMPCfortemperaturecontrol
1d1h
~b1,0~1h.Theparametersa1,b1,d1and1,d11arecomputedby:
a1eh=T1,b1,deh
~1=T1
1K11andb1,dK1eh~1=T
eh=T11Notethatthesumofb1,d1,b1,d11satisfies15
b1,d1b1,d11K11a1
14
Whenthetimedelay1variesintherange
d12L1,U
1,d1hasthevalueintherange
12dL1,dU1.dL1anddU
1aredefinedas:
dL1flL1=handdU
1clU1=h,wherefl(x)isafunctiontoroundxtothenearestintegertowardnegative,andcl(x)isafunctiontoroundxtobenearestintegerpositive.Therefore,whentowardLUEquation(13)canbewrittenin12ageneral1,1,formasfollows:
y1,k1a1y1,kb1,dL1ukdL
1
b1,dUukdU11
15
Defineastatevectorx0...,u1,ky1,k,ukdU1
,k1,thenEquation(15)canberefor-mulatedas:
x1,k1A1x2,kB1u1,k
yx16
1,kC12,kwherethecoefficientmatricesA1,Bappropriateformcorresponding1,Cto1areinanthedefinitionofx(14),itcanbeshown1,k.BasedontherelationshipthatwhenLUand12KL,12K1,K11U1
,A1,B1lieinanuncertaintypolytopeX(
1definedby:
1:A1,B1
XL1l1,iA1,i,B1,i,i1
0l1,XL1)
i1,
l1,i1
17
i1
whereL12dU1dL
11.ThedefinitionofA1,i,B1,iisgiveninAppendixA.
Second,usingthesamplingintervalh,themodel(9)issampledinto:e2,k11a2e2,ka2e2,k1
b2,d2y1,kd2b2,d21y1,kd21
18
wheree2,ky2,ky(yfor2,risthetrackingerror2,risthesetpointysatisfying2),d2isthetimedelay
2d2h~2,0~2hand
a2,b2,d2,b2,d21are:
a2eh=T2,b2,d
~2=T2
2K21andb2,d1K2eheh~2=T2
eh=T22Definex0y2,ke2,k,e2,k1,y1,kd21,...,
1,k1,then(18)becomes:
x2,k1A2x2,kB2y1,ke19
2,kC2x2,k
wherethecoefficientmatricesA2,B2,C2are
inanappropriateformcorrespondingdefinitionx2,k.WhenK22KLUtotheTLof2,K2and22T2,TU
coefficient2,theuncertaintiesassociatedwiththematrices(A2,B2)canalsobedescribedusinganuncertaintypoly-topeanddefinedas:
(
2:A2,BXL22
l2,jA2,j,B2,j,
j1
XL2)
0l2,j1,
l2,j1
20
j1
ThedefinitionofA2,j,B2,jisgivenin
AppendixB.
x0
Finally,defineaglobalstatevectoraskx01,k,x02,k,then(16)and(19)arecom-binedtogetherandreformulatedintotheformof(11),wherethecoefficientmatricesA,Bare:
A
A10
!
B1!
B2C1
A2
,B
021
46RobustMPCfortemperaturecontrol
Inthisstudy,an16offlinemodelpredictivecontrolalgorithmusingLMItechniqueisemployedtodesignthecontrollerasinHuangetal.15Thecontrollerisintheformofastatefeedbackcontrolanddescribedby:
ukFxkxk
28
whereF(xisstatek)indicatesthegainofthecontrollawdependentandF2{Fj,j1,...,Np}.Npisauser-definedparameter,seeAppendixC.Thedesignofthefeedbacklawsandthesearchofanappropriatefeed-backgainforagivenxCforthekarebrieflyintroducedinAppendixsakeofcompleteness.Itshouldbenotedthatthesamplingratiohhasasignificanteffectonthecontrolperfor-mance,andgenerally,thesampling18ratiohshouldsatisfyhmin(T1,T2)/10.Althoughthecontrolalgorithmdevelopmentseemsquitecomplex,itsonlinecomputationisactuallyassimpleassearchingalookuptableandallthecomplexcomputationisdoneoffline.Sincey1(thesupplyairtemper-ature)andy2(thereturnairtemperature)couldbemeasured,nostateobserverisneededforthefeedbackcontrollerintheformofEquation(28).5
Controlperformancetests
5.1Testfacility
AplatformfordynamicallyemulatingtheoperationofaCAVair-conditioningsystemwasdevelopedtoevaluatethecontrolperfor-manceoftheproposedrobustcontrolstrat-egy.TheplatformwasconstructedusingaTransientSimulationProgramTRNSYS.19Thebuildingsystemisanopenplanofficeabout1200m2,whichisonehalfofafloorofahigh-risecommercialbuilding.ACAVair-conditioningsystemservesthisbuildingsystembymaintainingtheroomtemperaturetoauser-predefinedsetpoint.Theindoorthermalcomfortisrealisedbydeliveringthesupplyair,whichiscooleddownafterthe
coolingcoil,toindoorspacethroughdiffu-sers.Returnairisdrawnbackthroughtheceilingplenum.Thedesignairflowrateis7.2kg/s.Thedesignsupplychilledwaterflowrateandtemperatureare7.0kg/sand78C,respectively.ThissystemasshowninFigure1includesasupplyairfanandareturnairfanwithconstantspeed,acoolingcoilandinterlockeddampersforintroducingconstantfreshairflowrateforensuringindoorairquality,etc.
Inthissimulation,thecomponentsofconcernarethebuildingmodel,thecoolingcoilmodeloftheAHU,andtheairductmodelandtheauxiliarymodelssuchassensorandactuatormodels,etc.Thebuildingmodelisasimplifiedmodelsimulatingthedynamicbalanceofenergyandmoistureofthebuild-ingsystem,20developedbasedonIEAAnnex17.21Themodelrepresentstheopenofficespaceusingathermalnetworkofthermalresistance,thermalcapacitanceandairvolume.Thisofficeisdividedintodifferentsubspacesfordiffuserconfiguration,whileeachsubspaceismodelledasanodeofwell-mixedairvolume.Theexternalwallofeachsubspaceisrepresentedbyanodeofthermalcapacitanceandresistancelinkingthespacewithoutside.Theinternalstructureandfurnitureineachsubspacearerepresentedbyanodeofthermalcapacitanceconnectedtothespacethroughathermalresistance,respectively.
Thecoolingcoilmodelwasdevelopedonthebasisofthemathematical22modelproposedbyLebrunetal.inIEAAnnex17.Thismodelwasusedindevelopingthesimulationplatform.20Afirst-orderdifferentialequationisusedtorepresentthedynamicsofacoilwithlumpedthermalmassbasedonenergybalance.Theoutletairandwatertempera-turesarecomputedusingthesteady-stateapproachbasedontheheatbalancesattheairsideandwaterside,respectively,separatedbythecoil.Classicalnumberoftransferunitmethodandheattransfereffectiveness
50RobustMPCfortemperaturecontrol
wereillustratedinFigure5,whichresultedintheoscillationsinthewaterflowrateaswellasinthesupplyairtemperatureasshowninFigures6and7,respectively.Althoughthe
parameterstunedinthesummerdaywerenotsuitableanymoreforthePIcontrolinthewinterdayduetothechangedoutdoorconditions.Theoscillationsincontrolinputs
Waterflowrate(kg/s)
Time(h)
Figure6WaterflowrateusingPIDcontrolandRMPCcontrolinthesunnysummertestdayandthesunnywintertestday
Outletairtemperature(C)
891011121314Time(h)
151617181920
Figure7OutletairtemperatureofthecoolingcoilusingPIDcontrolandRMPCcontrolinthesunnysummertestdayandthesunnywintertestday
XXuetal.
oscillationmagnitudeissmallandmightnotcausethermaluncomfortable,itcannotbeacceptablebecausethefrequentoscillationsareharmfulfortheequipments.4
Predictedpercentageofdissatisfied(PPD)isanindexthatestablishesaquantitativepredictionofthepercentageofthermallydissatisfiedpeopleforevaluatingthethermalcomfortofanoccupiedspace.Inthisstudy,PPDvaluesoftheair-conditioningspaceusingtraditionalPIDcontrolandtheadvancedRMPCcontrolwerealsoevaluatedtoassesstheimpactsofbothcontrolsonthethermalcomfort.Figure8presentsthePPDprofilesusingbothcontrolsinthesunnysummertestdayandthesunnywintertestday.ThePPDprofilesusingRMPCandPIcontrolarealmostthesame.ThemaximumPPDvalueofabout12.5occurredbetween8:00amand9:00amduetothesignificantincreaseofinternalheatloadresultinginhighindoorairtemperature.Inthesunnywintertestday,bothPPDprofilesalmostoverlap,andthePPDvalueisabout5.ThesePPDvaluesinthesummertestdayandthewintertestdayareacceptablesinceASHRAE
51
Standard55specifiesconditionsorcomfortzones,where80%ofsedentaryorslightlyactivepersonsfindtheenvironmentthermallyacceptable.24Therefore,bothcontrolmeth-odsofPIDcontrolandRMPCcontrolalmostdonotaffecttheindoorthermalcomfort,althoughtheymayresultindifferentindoortemperatureresponse.However,itisworthytopointoutthatinappropriatepara-metersofPIDcontrolmayresultindamagetovalvesand/oractuatorsduetounstablecontrol,althoughsuchcontrolcouldsatisfythethermalcomfortrequirementofoccu-pants.AsforRMPCcontrol,theuncertain-tiesoftheair-conditioningsystemandthebuildingsystemareconsideredseriouslywhendesigningthecontroller.Thiscontrolcanobtainnotonlyacceptablethermalcomfortbutalsostablecontrolwhichmayprolongthelifecycleofdevicesandequipmentsofair-conditioningsystems.6
Conclusions
Thisarticledevelopsarobustcontrolstrategyforimprovingthetemperaturecontrolofan
AveragePPD(–)
891011121314Time(h)
151617181920
Figure8AveragePPDusingPIDcontrolandRMPCcontrolinthesunnysummertestdayandthesunnywintertestday
52RobustMPCfortemperaturecontrol
air-conditioningsystemmainlyincludingthe
coolingprocesswhenairpassesthroughthecoolingcoilandtheroomcoolingprocesswhencoolingairisdeliveredintothecondi-tionedspace.Thecoolingcoilsubsystemandtheair-conditioningroomsubsystemaremod-elledasafirst-orderform,anddifferentuncertaintiesassociatedwiththeprocessparametersofbothmodelsareinvestigatedanddescribedusinganuncertaintypolytope.Ithasbeenshownthatbasedonthisdescrip-tion,RMPCcouldbeemployedtodesignarobustcontrollerforthissystemanddealwiththeuncertaintiesandconstraintsinastraight-forwardway.
CasestudyshowsthattheapplicationofRMPCintheCAVair-conditioningsystemcanachieveabettersetpointtrackingoftheroomtemperatureandabetterdisturbancerejectionofdisturbanceswhencomparedwithconventionallyusedPIDcontrol.RMPCmayachievestabletemperaturecontrolwhilemain-tainingacceptablethermalcomfort,althoughitmayresponseslightlyslowlythanthefinetunedPIDcontrol.InappropriateparametersofPIDcontrolmayresultinunstablecontrolcausingdamagetocontroldevices,whilethispointmaybeignoredsincesuchunstablecontroldoesnothaveobviouseffectonthermalcomfort.TheproposedmethodcanalsobeappliedtootherHVAClocalprocessesthatsufferheavilyfromdynamicsvariationsoruncertainties.Appendix
A:DefinitionLof(A1,i,B1,i)Whend10,
2
1a1a101,dU
3A61
1,166101,dU1
17407dU11,3Id11,dU1
175,
U01,dU1
2
A1,2A1,1
261a1a
01,dU1bML
131
A01,dU71,3
661611740dU
11,30dU711,dU1
175,2
01,dU1261a1a01,dUMU31
1b11,dU7A66101,4
611740dU
0dU711,311,dU1
17051,dU122
6
1a1abML1
01,dU13
1
A1,2dU6101,dU7117116640dU711,3IdU11,dU1
175,2
01,dU1
26
1a1abMU1
01,dU311A01,71,2dU116616dU11740dU11,3IdU11,dU1
1772051,dU1
2ML32MUB1,16b40dU,175,B1,26b340dU71
1
,15,
1
1B01,3BdU!
1,2dU11
1,11
1
WhendL140,
2
61a1a101,dU1
dL
1bML101,dL131A01,dU7
1,1661611740dU
11,3IdU1,dU7111705,1,dU2
121a1a101,dU61
dL
1bMU101,dL311A66101,dU71,261
1
740dU
11,3I7dU11,dU1
1705
1,dU1
2
2
61a1a1bML1
1,dU31
160U7
A1,d1
171,2dU71dL6
11
166640dU11,3I7dU711,dU1
17,051,dU22
161a1a1bMU101,dU3116071,dU1
1
7A1,2dU6
171dL1
1666I740dUdU711,311,dU11705
1,dU12
B0dU1,1B1
1,1#
1,2dU1
dL1
1
1
Inthesedefinitions,0d,disaddmatrixwithallitemsbeingzero;Imatrix;andbMLd,disaddidentity
1,bMU
1arebML1KL11abMUK1,1U
11a1.
B:Definitionof(A2,j,B2,j)
WhenhTlinearisedwith2)/10,brespect2,tod2andba2,d21canbe2
b2,dK21a2e
~2=T22%K211a212b2,d21K21a2b2,d2%K221a222,wherenWhenK211LnU11andn1nandT2212values22Kof2,Kthea2
22TL2,TU2.,2,b2,d2,b2,d21liesinanuncertaintypolytopewiththecornersdefinedby:C12:aL2,KL211aL212,KL221aL
222C22
:aL2,KU211aL212,KU221aL
222
C32:aU2,KL211aU212,KL221aU
222C42:aU2,KU211aU212,KU2
21aU
222,whereaLh=TL
U
2e2andaUh=T2affineto2e
.Since(A2,B2)area2,b2,d2,b2,d21
XXuetal.53
accordingtodefinitionofxas:
2,kinEquation
(20),(A2,j,B2,j)aredefined21ajj2aj2bj2,d21b2,d2
01,d21
3
6
A2,j
666101,d272767
40d2,3d7,I2,d275
1,d23B
0d22,1!1
,
whereajj2,bi2,d2,b2,d21obtainitsvaluefromthecornerCj2
,j1,...,4.
C:OfflineoptimisationofthefeedbacklawInordertooptimisethegainofthefeedbackcontrollawFxispartitionedintoj,thespaceofthestate0asequencesubspaces,denotedasxS1
ofnested
Njx1(j1,...,p),whereNEachpisthenumberofthenestedsubspaces.subspaceisassignedtoastatefeedbackruleFj.Ifthesmallestspacewherethecurrentstateliesisthej-thsub-space,thenthecontrollawisusubspacecanbecomputedaccordingkFjxk.Thetothesizeofthetrackingerror.Whendenotingthelargestpossibletrackingerrorwithemandsettingx1(em,em,0),asequenceofstatesforcomputingthenestedsubspacescanbedefinedby:
xjx1
Npj1
N,j1,...,Np
p
Givenxj,thematrixSminimisation.jandFjcanbe16computedusingaLMI-basedThefor-mulationoftheLMI-basedminimisationisgivenby:SjargSjminj,Sj,Yjjsubjectto
j0!
C:1x
2IYj!1xjS!0;C2
:!0;j
Y0jQC3:Sj1Sj!0
and
54
RobustMPCfortemperaturecontrol
SSB
j
jA0i,lY0jB0i,lSjQ1=2Y0jR1=21C:BBBAlSj
BlYjSj00CC4BC@
Q1=2Sj0jI0C
CAR1=2Yj0
jI
!0,
i1,...,dUdL1l1,2
,wherejandYjaretemporaryvariables.Theconstraint(C1)definesthesubspaceStheconstraints(Cj,(25),theconstraint2)comesfromtheconstraint(CS3)ensuresthatSnestedintojisj1and(Cat4)indicatesthattheoptimiserisobtainedthecornersoftheuncertaintypolytope.ThefeedbacklawFgivenbyFofjis
jYjSj1
.ThecomputationFandSj1,...,N)areperformedoffline,jandtheyj(arestoredpinalookuptable.
Foronlineapplication,itisnecessarytofindthesmallestsubspaceinwhichthecurrent
statexx0klies,i.e.xksatisfiesx0kSm1
xk1andkSm11xk1,wherem2[1,2,...,Np].Whenm5Np,FkisalinearcombinationofFFcomputedby:
mandm1FkkFm1kFm1,
wherethecoefficientakispositivevalue,satisfying
x011kkSm
1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 擋墻涵洞勞務(wù)分包合同
- 會議室出租協(xié)議書
- 整棟房屋買賣合同
- 給排水外網(wǎng)施工方案
- 汕尾露臺花園施工方案
- TCSHB 0018-2024 全釩液流電池碳塑復(fù)合雙極板技術(shù)規(guī)范
- 硬化襯砌固定邊坡施工方案
- 隧道一級邊坡平臺施工方案
- 雞西市屋面鋼結(jié)構(gòu)施工方案
- 高品質(zhì)住宅建設(shè)標(biāo)準(zhǔn)報批稿
- 2025年安徽衛(wèi)生健康職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫審定版
- 2025年興安職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫新版
- 《中華人民共和國學(xué)前教育法》專題培訓(xùn)
- 中醫(yī)適宜技術(shù)-中藥熱奄包
- 2024年湖南大眾傳媒職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 2024年中國科學(xué)技術(shù)大學(xué)創(chuàng)新班物理試題答案詳解
- 國家工業(yè)管道標(biāo)識規(guī)范及顏色
- 動火作業(yè)標(biāo)準(zhǔn)手冊
- 度帶和度帶代及中央子午線對照表
- 帶圈數(shù)字序號1-96
- 常用抗凝藥物的應(yīng)用及護理PPT課件
評論
0/150
提交評論