福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析_第1頁
福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析_第2頁
福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析_第3頁
福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析_第4頁
福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省寧德市福鼎第十八中學(xué)2022-2023學(xué)年高三數(shù)學(xué)理聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.如圖是某班50位學(xué)生期中考試化學(xué)成績的頻率分布直方圖,其中成績分組區(qū)間是,則成績在內(nèi)的頻數(shù)為(

)A.27

B.30

C.32

D.36

參考答案:D試題分析:由題意,,.故選D.考點:頻率分布直方圖.2.執(zhí)行如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的a的值為(

)A.

B.

C.

D.-2參考答案:C3.若A為不等式組表示的平面區(qū)域,則當(dāng)a從﹣2連續(xù)變化到1時,則直線x+y=a掃過A中的那部分區(qū)域的面積為()A.1 B. C. D.參考答案:D【考點】簡單線性規(guī)劃.【分析】先由不等式組畫出其表示的平面區(qū)域,再確定動直線x+y=a的變化范圍,最后由三角形面積公式解之即可.【解答】解:如圖,不等式組表示的平面區(qū)域是△AOB,動直線x+y=a(即y=﹣x+a)在y軸上的截距從﹣2變化到1.知△ADC是斜邊為3的等腰直角三角形,△EOC是直角邊為1等腰直角三角形,所以區(qū)域的面積S陰影=S△ADC﹣S△EOC=×3×﹣×1×1=故答案為:D.4.若存在兩個正實數(shù)x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是()A.(﹣∞,0) B. C. D.參考答案:D【考點】函數(shù)恒成立問題.【專題】函數(shù)思想;轉(zhuǎn)化法;函數(shù)的性質(zhì)及應(yīng)用.【分析】根據(jù)函數(shù)與方程的關(guān)系將方程進行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進行求解即可.【解答】解:由3x+a(2y﹣4ex)(lny﹣lnx)=0得3x+2a(y﹣2ex)ln=0,即3+2a(﹣2e)ln=0,即設(shè)t=,則t>0,則條件等價為3+2a(t﹣2e)lnt=0,即(t﹣2e)lnt=﹣有解,設(shè)g(t)=(t﹣2e)lnt,g′(t)=lnt+1﹣為增函數(shù),∵g′(e)=lne+1﹣=1+1﹣2=0,∴當(dāng)t>e時,g′(t)>0,當(dāng)0<t<e時,g′(t)<0,即當(dāng)t=e時,函數(shù)g(t)取得極小值為:g(e)=(e﹣2e)lne=﹣e,即g(t)≥g(e)=﹣e,若(t﹣2e)lnt=﹣有解,則﹣≥﹣e,即≤e,則a<0或a≥,故選:D.【點評】本題主要考查不等式恒成立問題,根據(jù)函數(shù)與方程的關(guān)系,轉(zhuǎn)化為兩個函數(shù)相交問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強.5.已知an=log(n+1)(n+2)(n∈N*).我們把使乘積a1·a2·a3·…·an為整數(shù)的數(shù)n叫做“優(yōu)數(shù)”,則在區(qū)間(1,2004)內(nèi)的所有優(yōu)數(shù)的和為()A.1024

B.2003

C.2026

D.2048參考答案:C略6.條件P:“x<1”,條件q:“(x+2)(x﹣1)<0”,則P是q的(

) A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件參考答案:B考點:必要條件、充分條件與充要條件的判斷.專題:計算題.分析:由(x+2)(x﹣1)<0,可解得,﹣2<x<1,記集合A={x|x<1},集合B={x|﹣2<x<1},由B是A的真子集,可得答案.解答: 解:由(x+2)(x﹣1)<0,可解得,﹣2<x<1,記集合A={x|x<1},集合B={x|﹣2<x<1},顯然,B是A的真子集,即p不能推出q,但q能推出p,故p是q的必要而不充分條件.故選B.點評:本題為充要條件的考查,把問題轉(zhuǎn)化為對應(yīng)集合的包含關(guān)系是解決問題的關(guān)鍵,屬基礎(chǔ)題.7.對于平面、、和直線、、、,下列命題中真命題是(

)A.若,則

B.若,則C.若則

D.若,則參考答案:C8.某地為了調(diào)查去年上半年A和B兩種農(nóng)產(chǎn)品物價每月變化情況,選取數(shù)個交易市場統(tǒng)計數(shù)據(jù)進行分析,用和分別表示A和B兩的當(dāng)月單價均值(元/kg),下邊流程圖是對上述數(shù)據(jù)處理的一種算法(其中),則輸出的值分別是(

) 1月2月3月4月5月6月2.02.12.22.01.91.83.13.13.13.02.82.8 A. B. C. D.參考答案:D流程圖功能為求方差:,選D.

9.不等式的解集為(

)A.

B.

C.

D.參考答案:C10.中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學(xué)家秦九韶在其著作《數(shù)學(xué)九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”,如圖2程序框圖的算法思路源于“大衍求一術(shù)”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=()A.1 B.6 C.7 D.11參考答案:C【考點】程序框圖.【分析】模擬執(zhí)行程序運行過程,即可得出程序運行后輸出的c值.【解答】解:模擬執(zhí)行程序運行過程,如下;a=20,b=17,r=3,c=1,m=0,n=1,滿足r≠1;a=17,b=3,r=2,q=5,m=1,n=1,c=6,滿足r≠1;a=3,b=2,r=1,q=1,m=1,n=6,c=7,滿足r=1;輸出c=7.故選:C.【點評】本題考查了程序框圖的應(yīng)用問題,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.二、填空題:本大題共7小題,每小題4分,共28分11.如右圖所示的流程圖中,循環(huán)體執(zhí)行的次數(shù)是

.

參考答案:49略12.過雙曲線x2-=1的右焦點作直線l交雙曲線于A、B兩點,若實數(shù)λ使得|AB|=λ的直線l恰有3條,則λ=

.參考答案:4解:右支內(nèi)最短的焦點弦==4.又2a=2,故與左、右兩支相交的焦點弦長≥2a=2,這樣的弦由對稱性有兩條.故λ=4時設(shè)AB的傾斜角為θ,則右支內(nèi)的焦點弦λ==≥4,當(dāng)θ=90°時,λ=4.與左支相交時,θ=±arccos時,λ===4.故λ=4.13.已知實數(shù)滿足,則的最大值為_______________.參考答案:略14.已知兩點,,點滿足,則點的坐標(biāo)是

,=

.

參考答案:,50略15.(不等式選做題)已知函數(shù)f(x)=|x-2|-|x-5|,則不等式f(x)≥x2-8x+15的

解集為

.參考答案:略16. 如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

(1) 證明:BC1//平面A1CD;(2) 設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.參考答案:提示:連接,中位線易證明平行

易知

所以V=1略17.在長方體中ABCD—A1B1C1D1中,B1C和C1D與底面A1B1C1D1所成的角分別為60°和45°,則異面直線和所成的角的余弦值為

.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知橢圓C:的離心率為,直線交橢圓C于A、B兩點,橢圓C的右頂點為P,且滿足.(1)求橢圓C的方程;(2)若直線與橢圓C交于不同兩點M、N,且定點滿足,求實數(shù)m的取值范圍.參考答案:(1);(2).試題分析:(1)根據(jù)可求得,再由離心率可得,于是可求得,進而得到橢圓的方程.(2)結(jié)合直線和橢圓的位置關(guān)系求解.將直線方程和橢圓方程聯(lián)立消元后得到二次方程,由判別式大于零可得,結(jié)合可得,從而得到關(guān)于的不等式組,解不等式組可得所求范圍.試題解析:(1)∵,∴,又,∴,∴,∴橢圓的方程為.(2)由消去整理得:,∵直線與橢圓交于不同的兩點、,∴,整理得.設(shè),,則,又設(shè)中點的坐標(biāo)為,∴,.∵,∴,即,∴,∴,解得.∴實數(shù)的取值范圍.19.直三棱柱是的中點.(Ⅰ)求證:;(Ⅱ)求證:.參考答案:(Ⅰ)

(Ⅱ)略20.已知曲線C的極坐標(biāo)方程是ρ﹣2cosθ﹣4sinθ=0,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程是(t是參數(shù)).(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線l的參數(shù)方程化為普通方程;(2)若直線l與曲線C相交于A、B兩點,與y軸交于點E,求|EA|+|EB|.參考答案:略21.已知函數(shù)f(x)=.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)a>0,求函數(shù)f(x)在區(qū)間[a,2a]上的最大值.參考答案:(1),由,解得;由,解得.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)可知:①當(dāng)時,即,在上是增函數(shù),所以此時;②當(dāng),時,即,在處取得極大值,也是它的最大值,所以此時;③當(dāng)時,在上是減函數(shù),所以此時.綜上,函數(shù)在區(qū)間上的最大值;當(dāng)時,為;當(dāng)時,為;當(dāng)時,為.22.已知函數(shù)f(x)=x2﹣ax+(3﹣a)lnx,a∈R.(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;(2)設(shè)f(x)有兩個極值點x1,x2,且x1<x2,求證:f(x1)+f(x2)>﹣5.參考答案:【考點】導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用;利用導(dǎo)數(shù)研究曲線上某點切線方程.【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求出a的值,(2)根據(jù)x1,x2為f′(x)=0的兩根,求出a的范圍,再根據(jù)韋達定理得到f(x1)+f(x2)=﹣a2+a﹣3+(3﹣a)ln(3﹣a),構(gòu)造函數(shù)h(a)=﹣a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),求出函數(shù)的最小值大于5即可.【解答】解:(1)∵f′(x)=x﹣a+=,∴k=f′(1)=4﹣2a,∵曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,∴k=﹣,∴4﹣2a=﹣,解得a=(2)由題意,x1,x2為f′(x)=0的兩根,∴,∴2<a<3,又∵x1+x2=a,x1x2=3﹣a,∴f(x1)+f(x2)=(x12+x22)﹣a(x1+x2)+(3﹣a)lnx1x2,=f(x)=﹣a2+a﹣3+(3﹣a)ln(3﹣a),設(shè)h(a)=﹣a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),則h′(a)=﹣a﹣l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論