




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.2.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n23.給出下列各數(shù)式,①②③④計算結果為負數(shù)的有()A.1個 B.2個 C.3個 D.4個4.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣65.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°6.一枚質(zhì)地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.7.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結論錯誤的是()A.AE=6cm B.C.當0<t≤10時, D.當t=12s時,△PBQ是等腰三角形8.根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是()A.2013年至2017年北京市國民生產(chǎn)總值逐年增加B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5320億元C.2017年比2016年的國民生產(chǎn)總值增加了10%D.若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達到33880億元9.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.110.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構成這個正方體的表面展開圖的概率是()A. B. C. D.11.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.12.如果k<0,b>0,那么一次函數(shù)y=kx+b的圖象經(jīng)過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.14.如圖,矩形ABCD的對角線BD經(jīng)過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.15.瑞士的一位中學教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.16.如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為_____.17.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.18.若不等式組x<4x<m的解集是x<4,則m三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(6分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.21.(6分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?22.(8分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)觀察圖象:當時,比較.23.(8分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.24.(10分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.25.(10分)一家蔬菜公司收購到某種綠色蔬菜140噸,準備加工后進行銷售,銷售后獲利的情況如下表所示:銷售方式
粗加工后銷售
精加工后銷售
每噸獲利(元)
1000
2000
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.(1)如果要求12天剛好加工完140噸蔬菜,則公司應安排幾天精加工,幾天粗加工?(2)如果先進行精加工,然后進行粗加工.①試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關系式;②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?26.(12分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.27.(12分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.2、C【解析】
解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.3、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數(shù)的有2個.故選B.4、D【解析】試題分析:連結OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.5、A【解析】
根據(jù)線段垂直平分線的性質(zhì)得到AD=DC,根據(jù)等腰三角形的性質(zhì)得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內(nèi)角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質(zhì),三角形的內(nèi)角和,正確掌握線段垂直平分線的性質(zhì)是解題關鍵.6、B【解析】
朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.7、D【解析】(1)結論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結論D錯誤,理由如下:當t=12s時,點Q與點C重合,點P運動到ED的中點,設為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.8、C【解析】
由條形圖與扇形圖中的數(shù)據(jù)及增長率的定義逐一判斷即可得.【詳解】A、由條形圖知2013年至2017年北京市國民生產(chǎn)總值逐年增加,此選項正確;B、2017年第二產(chǎn)業(yè)生產(chǎn)總值為28000×19%=5320億元,此選項正確;C、2017年比2016年的國民生產(chǎn)總值增加了,此選項錯誤;D、若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達到2800×(1+10%)2=33880億元,此選項正確;故選C.【點睛】本題主要考查條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是根據(jù)條形統(tǒng)計圖與扇形統(tǒng)計圖得出具體數(shù)據(jù).9、C【解析】
延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.10、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關鍵.11、D【解析】
根據(jù)題意列出關系式,去括號合并即可得到結果.【詳解】解:設小長方形卡片的長為x,寬為y,根據(jù)題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【點睛】此題考查了整式的加減,熟練掌握運算法則是解本題的關鍵.12、D【解析】
根據(jù)k、b的符號來求確定一次函數(shù)y=kx+b的圖象所經(jīng)過的象限.【詳解】∵k<0,
∴一次函數(shù)y=kx+b的圖象經(jīng)過第二、四象限.
又∵b>0時,
∴一次函數(shù)y=kx+b的圖象與y軸交與正半軸.
綜上所述,該一次函數(shù)圖象經(jīng)過第一、二、四象限.
故選D.【點睛】本題主要考查一次函數(shù)圖象在坐標平面內(nèi)的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
設MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關于x的二次函數(shù)關系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關鍵.14、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.15、.【解析】
分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個數(shù)的分子是(9+2)2=121;第五個的分母是:32+13=45;第六個的分母是:45+15=60;第七個的分母是:60+17=77;第八個的分母是:77+19=96;則第九個的分母是:96+21=1.因而第九個數(shù)是:.故答案為:.【點睛】主要考查了學生的分析、總結、歸納能力,規(guī)律型的習題一般是從所給的數(shù)據(jù)和運算方法進行分析,從特殊值的規(guī)律上總結出一般性的規(guī)律.16、2【解析】
過A作關于直線MN的對稱點A′,連接A′B,由軸對稱的性質(zhì)可知A′B即為PA+PB的最小值,【詳解】解:連接OB,OA′,AA′,∵AA′關于直線MN對稱,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=即PA+PB的最小值.【點睛】本題考查軸對稱求最小值問題及解直角三角形,根據(jù)軸對稱的性質(zhì)準確作圖是本題的解題關鍵.17、AC⊥BD【解析】
根據(jù)題意畫出相應的圖形,如圖所示,由四邊形EFGH為矩形,根據(jù)矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據(jù)中位線定理得到EF與DB平行,根據(jù)兩直線平行,同旁內(nèi)角互補得到∠EMO=90°,同理根據(jù)三角形中位線定理得到EH與AC平行,再根據(jù)兩直線平行,同旁內(nèi)角互補得到∠AOD=90°,根據(jù)垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質(zhì),三角形的中位線定理,以及平行線的性質(zhì).根據(jù)題意畫出圖形并熟練掌握矩形性質(zhì)及三角形中位線定理是解題關鍵.18、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2).【解析】
(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、(1)證明見解析(2)【解析】
(1)由點G是AE的中點,根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長,再由勾股定理即可求出FD的長.【詳解】(1)∵點G是AE的中點,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【點睛】本題考查了垂徑定理,等腰三角形的性質(zhì),切線的判定,解直角三角形,相似三角形的判定與性質(zhì),勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關鍵,證明證明△DAG∽△FDG是解(2)的關鍵.21、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)今年最多可獲得毛利潤1080萬元【解析】
(1)利用待定系數(shù)法可求出y與x以及z與x之間的函數(shù)關系式;(1)根據(jù)(1)的表達式及毛利潤=銷售額﹣生產(chǎn)費用,可得出w與x的函數(shù)關系式,再利用配方法求出最值即可;(3)首先求出x的取值范圍,再利用二次函數(shù)增減性得出答案即可.【詳解】(1)圖①可得函數(shù)經(jīng)過點(100,1000),設拋物線的解析式為y=ax1(a≠0),將點(100,1000)代入得:1000=10000a,解得:a=,故y與x之間的關系式為y=x1.圖②可得:函數(shù)經(jīng)過點(0,30)、(100,10),設z=kx+b,則,解得:,故z與x之間的關系式為z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴當x=75時,W有最大值1115,∴年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)令y=360,得x1=360,解得:x=±60(負值舍去),由圖象可知,當0<y≤360時,0<x≤60,由W=﹣(x﹣75)1+1115的性質(zhì)可知,當0<x≤60時,W隨x的增大而增大,故當x=60時,W有最大值1080,答:今年最多可獲得毛利潤1080萬元.【點睛】本題主要考查二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,注意二次函數(shù)最值的求法,一般用配方法.22、(1);(2)【解析】
(1)由一次函數(shù)的解析式可得出D點坐標,從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標,進而算出一次函數(shù)與反比例函數(shù)的解析式;
(2)以A點為分界點,直接觀察函數(shù)圖象的高低即可知道答案.【詳解】解:(1)對于一次函數(shù)y=kx-2,令x=0,則y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x軸于B,
∴,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
將C點坐標代入y=kx-2得4k-2=0,
∴k=,
∴一次函數(shù)解析式為y=x-2;
將A點坐標代入反比例函數(shù)解析式得m=6,
∴反比例函數(shù)解析式為y=;
(2)由函數(shù)圖象可知:
當0<x<6時,y1<y2;
當x=6時,y1=y2;
當x>6時,y1>y2;【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題.熟悉函數(shù)圖象上點的坐標特征和待定系數(shù)法解函數(shù)解析式的方法是解答本題的關鍵,同時注意對數(shù)形結合思想的認識和掌握.23、(1)證明見解析;(2)證明見解析【解析】(1)根據(jù)平行線性質(zhì)求出∠B=∠C,等量相減求出BE=CF,根據(jù)SAS推出兩三角形全等即可;(2)借助(1)中結論△ABE≌△DCF,可證出AE平行且等于DF,即可證出結論.證明:(1)如圖,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE與△DCF中,,∴△ABE≌△DCF(SAS);(2)如圖,連接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E為頂點的四邊形是平行四邊形.24、(1)證明見解析;(2)1.【解析】
(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質(zhì),圓的切線垂直于經(jīng)過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.25、(1)應安排4天進行精加工,8天進行粗加工(2)①=②安排1天進行精加工,9天進行粗加工,可以獲得最多利潤為元【解析】
解:(1)設應安排天進行精加工,天進行粗加工,根據(jù)題意得解得答:應安排4天
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 知識產(chǎn)權教育在學校的普及與推廣
- 鄉(xiāng)鎮(zhèn)工廠租賃合同范本
- 電子書銷售平臺的市場分析與運營策略
- 現(xiàn)代辦公環(huán)境下骨科醫(yī)學影像技術的創(chuàng)新應用
- 科技公司如何通過培訓提升員工網(wǎng)絡防御能力
- 社區(qū)康復支持網(wǎng)絡在災害救援中的應用
- 2025江西南昌市江銅產(chǎn)融社會招聘1人筆試參考題庫附帶答案詳解
- 審車合同范本
- 格式和合同范本
- 2025至2030年中國聚合物瓷磚嵌縫劑數(shù)據(jù)監(jiān)測研究報告
- 神奇的光:如何形成彩虹
- 三、膽石癥課件
- 學生作業(yè)情況登記表模板(可打印)
- 兔子坡(閱讀課上課課件)
- 高中數(shù)學《立體幾何》教材分析及教學建議
- 八年級英語初中英語閱讀理解閱讀專項練習試卷附答案
- 固定資產(chǎn)清查盤點明細表
- 人教版八年級數(shù)學下冊課件【全冊】
- 物聯(lián)網(wǎng)管理平臺的設計與實現(xiàn)
- 1例妊娠糖尿病的個案護理
- 光伏發(fā)電職業(yè)病危害預評價方案方案
評論
0/150
提交評論