單因素方差分析_第1頁(yè)
單因素方差分析_第2頁(yè)
單因素方差分析_第3頁(yè)
單因素方差分析_第4頁(yè)
單因素方差分析_第5頁(yè)
已閱讀5頁(yè),還剩38頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

單因素方差分析第1頁(yè),共43頁(yè),2023年,2月20日,星期一基本概念試驗(yàn)指標(biāo)——試驗(yàn)結(jié)果??煽匾蛩亍谟绊懺囼?yàn)結(jié)果的眾多因素中,可人為控制的因素。水平——可控因素所處的各種不同的狀態(tài)。每個(gè)水平又稱為試驗(yàn)的一個(gè)處理。單因素試驗(yàn)——如果在一項(xiàng)試驗(yàn)中只有一個(gè)因素改變,其它的可控因素不變,則該類試驗(yàn)稱為單因素試驗(yàn)。因素——影響一個(gè)試驗(yàn)的指標(biāo)變化的原因。第2頁(yè),共43頁(yè),2023年,2月20日,星期一例1

為了比較4種單層皺紋海運(yùn)集裝箱的抗壓程度,從每種集裝箱中各隨機(jī)選取6個(gè)進(jìn)行最大抗壓試驗(yàn),得到數(shù)據(jù)如下表顯示,假設(shè)集裝箱的抗壓程度服從正態(tài)分布。問:不同種類的海運(yùn)集裝箱的抗壓強(qiáng)度是否有顯著差別?若有差異,哪一種抗壓程度高?集裝箱類型最大抗壓強(qiáng)度平均抗壓強(qiáng)度1655.5788.3734.3721.6679.4699.4713.082789.2772.5786.9686.1732.1774.8756.933737.1639.0696.3671.7712.2727.1697.234535.1628.7542.4559.0586.9520.0562.02第3頁(yè),共43頁(yè),2023年,2月20日,星期一集裝箱的最大抗壓程度——試驗(yàn)指標(biāo)

集裝箱類型——試驗(yàn)因素(唯一的一個(gè))四種類型集裝箱(1,2,3,4)——四個(gè)水平

因此,本例是一個(gè)四水平的單因素試驗(yàn)。引例用X1,X2,X3,X4分別表示四種集裝箱的最大抗壓程度,即為四個(gè)總體。假設(shè)X1,X2,X3,X4相互獨(dú)立,且服從方差相同的正態(tài)分布,即Xi~N(i,2)(i=1,2,3,4)本例問題歸結(jié)為檢驗(yàn)假設(shè)H0:1=2=3=4是否成立

第4頁(yè),共43頁(yè),2023年,2月20日,星期一

我們的目的是通過試驗(yàn)數(shù)據(jù)來判斷因素A的不同水平對(duì)試驗(yàn)指標(biāo)是否有影響。

設(shè)A表示欲考察的因素,它的個(gè)不同水平,對(duì)應(yīng)的指標(biāo)視作個(gè)總體每個(gè)水平下,我們作若干次重復(fù)試驗(yàn),同一水平的個(gè)結(jié)果,就是這個(gè)總體的一個(gè)樣本:

單因素等重復(fù)試驗(yàn)的方差分析因此,相互獨(dú)立,且與同分布。第5頁(yè),共43頁(yè),2023年,2月20日,星期一單因素試驗(yàn)資料表水平重復(fù)1...r(水平組內(nèi)平均值)(總平均值)試驗(yàn)結(jié)果第6頁(yè),共43頁(yè),2023年,2月20日,星期一

縱向個(gè)體間的差異稱為隨機(jī)誤差(組內(nèi)差異),由試驗(yàn)造成;橫向個(gè)體間的差異稱為系統(tǒng)誤差(組間差異),由因素的不同水平造成。品種重復(fù)123例:五個(gè)水稻品種單位產(chǎn)量的觀測(cè)值第7頁(yè),共43頁(yè),2023年,2月20日,星期一

由于同一水平下重復(fù)試驗(yàn)的個(gè)體差異是隨機(jī)誤差,所以設(shè):其中為試驗(yàn)誤差,相互獨(dú)立且服從正態(tài)分布線性統(tǒng)計(jì)模型

單因素試驗(yàn)的方差分析的數(shù)學(xué)模型具有方差齊性。相互獨(dú)立,從而各子樣也相互獨(dú)立。首先,我們作如下假設(shè):即第8頁(yè),共43頁(yè),2023年,2月20日,星期一則線性統(tǒng)計(jì)模型變成于是檢驗(yàn)假設(shè):等價(jià)于檢驗(yàn)假設(shè):整個(gè)試驗(yàn)的均值稱為因素A的第個(gè)水平的效應(yīng)。令稱其為因素A的總體平均值。第9頁(yè),共43頁(yè),2023年,2月20日,星期一考察統(tǒng)計(jì)量經(jīng)恒等變形,可分解為:其中組間平方和(系統(tǒng)離差平方和)反映的是各水平平均值偏離總平均值的偏離程度。如果H0

成立,則SSA

較小。若H0成立,則總離差平方和見書P251第10頁(yè),共43頁(yè),2023年,2月20日,星期一組內(nèi)平方和誤差平方和反映的是重復(fù)試驗(yàn)中隨機(jī)誤差的大小。第11頁(yè),共43頁(yè),2023年,2月20日,星期一若假設(shè)成立,則由抽樣分布定理5.2及基本假設(shè)可推得:將的自由度分別記作則(各子樣同分布),稱該關(guān)系式為自由度分解公式第12頁(yè),共43頁(yè),2023年,2月20日,星期一則(記,稱作均方和)對(duì)給定的檢驗(yàn)水平,由得H0的拒絕域?yàn)椋篎單側(cè)檢驗(yàn)

結(jié)論:方差分析實(shí)質(zhì)上是假設(shè)檢驗(yàn),從分析離差平方和入手,找到F統(tǒng)計(jì)量,對(duì)同方差的多個(gè)正態(tài)總體的均值是否相等進(jìn)行假設(shè)檢驗(yàn)。單因素試驗(yàn)中兩個(gè)水平的均值檢驗(yàn)可用第七章的T檢驗(yàn)法。第13頁(yè),共43頁(yè),2023年,2月20日,星期一(1)若,則稱因素的差異極顯著(極有統(tǒng)計(jì)意義),或稱因素A的影響高度顯著,這時(shí)作標(biāo)記;約定(2)若,則稱因素的差異顯著(差異有統(tǒng)計(jì)意義),或稱因素A的影響顯著,作標(biāo)記;(3)若,則稱因素A有一定影響,作標(biāo)記();(4)若,則稱因素A無顯著影響(差異無統(tǒng)計(jì)意義)。注意:在方差分析表中,習(xí)慣于作如下規(guī)定:第14頁(yè),共43頁(yè),2023年,2月20日,星期一單因素試驗(yàn)方差分析表方差來源組間組內(nèi)總和平方和自由度均方和F值F值臨界值簡(jiǎn)便計(jì)算公式:其中同一水平下觀測(cè)值之和所有觀測(cè)值之和第15頁(yè),共43頁(yè),2023年,2月20日,星期一例2

在飼料養(yǎng)雞增肥的研究中,某研究所提出三種飼料配方:A1是以魚粉為主的飼料,A2是以槐樹粉為主的飼料,A3是以苜蓿粉為主的飼料。為比較三種飼料的效果,特選24只相似的雛雞隨機(jī)均分為三組,每組各喂一種飼料,60天后觀察它們的重量。試驗(yàn)結(jié)果如下表所示:試比較三種飼料對(duì)雞的增肥作用是否相同。第16頁(yè),共43頁(yè),2023年,2月20日,星期一表8.1.1

雞飼料試驗(yàn)數(shù)據(jù)

飼料A雞重(克)A110731009106010011002101210091028A21107109299011091090107411221001A310931029108010211022103210291048第17頁(yè),共43頁(yè),2023年,2月20日,星期一將原始數(shù)據(jù)減去1000,列表給出計(jì)算過程

表8.1.2例2的計(jì)算表水平數(shù)據(jù)(原始數(shù)據(jù)-1000)TiTi2A17396012129281943763610024A210792-101099074122158534222560355A3932980212232294835412531620984113350517791363第18頁(yè),共43頁(yè),2023年,2月20日,星期一

利用計(jì)算公式,可算得各偏差平方和為:把上述諸平方和及其自由度填入方差分析表第19頁(yè),共43頁(yè),2023年,2月20日,星期一表8.1.3例8.1.2的方差分析表

來源平方和自由度均方和F比因子9660.083324830.04173.5948

誤差28215.9584211343.6171總和37876.041723若取=0.05,則F0.95

(2

,21)=3.47

,由于F=3.5948>3.47,故認(rèn)為因子A(飼料)是顯著的,即三種飼料對(duì)雞的增肥作用有明顯的差別。

第20頁(yè),共43頁(yè),2023年,2月20日,星期一

例2

以A、B、C三種飼料喂豬,得一個(gè)月后每豬所增體重(單位:500g)為下表,試作方差分析。飼料ABC增重514043482325262328解:第21頁(yè),共43頁(yè),2023年,2月20日,星期一解:第22頁(yè),共43頁(yè),2023年,2月20日,星期一不同的飼料對(duì)豬的體重的影響極有統(tǒng)計(jì)意義。方差分析表方差來源組間組內(nèi)總和平方和自由度均方和F值F值臨界值第23頁(yè),共43頁(yè),2023年,2月20日,星期一方差分析的基本步驟小結(jié):將資料總變異的自由度和平方和分解為各變異因素的自由度和平方和。計(jì)算均方。計(jì)算均方比,做出F測(cè)驗(yàn),以明確各個(gè)變異因素的重要程度。對(duì)各個(gè)平均數(shù)進(jìn)行多重比較。第24頁(yè),共43頁(yè),2023年,2月20日,星期一定理在單因素方差分析模型中,有如果H0不成立,則所以,即H0不成立時(shí),有大于1的趨勢(shì)。所以H0為真時(shí)的小概率事件應(yīng)取在F值較大的一側(cè)。第25頁(yè),共43頁(yè),2023年,2月20日,星期一

四、多重比較

F值顯著或極顯著,否定無效假設(shè)HO,表明試驗(yàn)中各處理平均數(shù)間存在顯著或極顯著差異,但并不意味著每?jī)蓚€(gè)處理平均數(shù)間的差異都顯著或極顯著的,也不能具體說明哪些處理平均數(shù)間有顯著或極顯著差異,哪些差異不顯著。第26頁(yè),共43頁(yè),2023年,2月20日,星期一

有必要進(jìn)行兩兩處理平均數(shù)間的比較,以具體判斷兩兩處理平均數(shù)間的差異顯著性。

統(tǒng)計(jì)學(xué)上把多個(gè)平均數(shù)兩兩間的相互比較稱為多重比較。多重比較的方法很多,常用的有最小顯著差數(shù)法(LSD法)和最小顯著極差法(LSR法)

。

第27頁(yè),共43頁(yè),2023年,2月20日,星期一

此法的基本作法是:在F檢驗(yàn)顯著的前提下,先計(jì)算出顯著水平為α的最小顯著差數(shù),然后將任意兩個(gè)處理平均數(shù)的差數(shù)的絕對(duì)值與其比較:(一)最小顯著差數(shù)法(LSD法)第28頁(yè),共43頁(yè),2023年,2月20日,星期一

若>LSDα,則與在α水平上差異顯著;反之,則在α水平上差異不顯著。最小顯著差數(shù)由下式計(jì)算:

式中:為在F檢驗(yàn)中誤差自由度下,顯著水平為α的臨界t值,為均數(shù)差數(shù)標(biāo)準(zhǔn)誤,

第29頁(yè),共43頁(yè),2023年,2月20日,星期一

其中為F檢驗(yàn)中的誤差均方,n為各處理的重復(fù)數(shù)。當(dāng)顯著水平α=0.05和0.01時(shí),從t值表中查出和,得:

利用LSD法進(jìn)行多重比較時(shí),可按如下步驟進(jìn)行:

第30頁(yè),共43頁(yè),2023年,2月20日,星期一(2)計(jì)算最小顯著差數(shù)和;

(3)將平均數(shù)多重比較表中兩兩平均數(shù)的差數(shù)與、比較,作出統(tǒng)計(jì)推斷。

(1)列出平均數(shù)多重比較表比較表中各處理按其平均數(shù)從大到小自上而下排列;

第31頁(yè),共43頁(yè),2023年,2月20日,星期一

(二)最小顯著極差法(LSR法)

LSR法的特點(diǎn)是把平均數(shù)的差數(shù)看成是平均數(shù)的極差,根據(jù)極差范圍內(nèi)所包含的處理數(shù)(稱為秩次距)k的不同而采用不同的檢驗(yàn)尺度,以克服LSD法的不足。這些在顯著水平α上依秩次距k的不同而采用的不同的檢驗(yàn)尺度叫做最小顯著極差(LSR)。第32頁(yè),共43頁(yè),2023年,2月20日,星期一

因?yàn)長(zhǎng)SR法是一種極差檢驗(yàn)法,所以當(dāng)一個(gè)平均數(shù)大集合的極差不顯著時(shí),其中所包含的各個(gè)較小集合極差也應(yīng)一概作不顯著處理。常用的LSR法有q檢驗(yàn)法和新復(fù)極差法兩種。

1、q

檢驗(yàn)法

此法是以統(tǒng)計(jì)量q的概率分布為基礎(chǔ)的。q值由下式求得:

第33頁(yè),共43頁(yè),2023年,2月20日,星期一

上式中,w為極差,為標(biāo)準(zhǔn)誤,分布依賴于誤差自由度dfe及秩次距k。利用q檢驗(yàn)法進(jìn)行多重比較時(shí),為了簡(jiǎn)便起見,不是將算出的q值與臨界q值比較,而是將極差與比較,從而作出統(tǒng)計(jì)推斷。為α水平上的最小顯著極差:第34頁(yè),共43頁(yè),2023年,2月20日,星期一

(1)列出平均數(shù)多重比較表;

(2)由自由度dfe、秩次距k查臨界q值,計(jì)算最小顯著極差LSR0.05,k,LSR0.01,k;

(3)將平均數(shù)多重比較表中的各極差與相應(yīng)的最小顯著極差LSR0.05,k,LSR0.01,k比較,作出統(tǒng)計(jì)推斷。

第35頁(yè),共43頁(yè),2023年,2月20日,星期一

2、SSR法此法是由鄧肯(Duncan)于1955年提出,又稱為Duncan法,或新復(fù)極差法。新復(fù)極差法與q法的檢驗(yàn)步驟相同,唯一不同的是計(jì)算最小顯著極差時(shí)需查SSR表

(附表9)而不是查q值表。最小顯著極差計(jì)算公式為:

第36頁(yè),共43頁(yè),2023年,2月20日,星期一

以上介紹的三種多重比較方法,其檢驗(yàn)尺度有如下關(guān)系:

LSD法≤SSR法≤q法當(dāng)秩次距k=2時(shí),取等號(hào);秩次距k≥3時(shí),取小于號(hào)。在多重比較中,LSD法的尺度最小,q檢驗(yàn)法尺度最大,新復(fù)極差法尺度居中。用上述排列順序前面方法檢驗(yàn)顯著的差數(shù),用后面方法檢驗(yàn)未必顯著;用后面方法檢驗(yàn)顯著的差數(shù),用前面方法檢驗(yàn)必然顯著。第37頁(yè),共43頁(yè),2023年,2月20日,星期一

生物試驗(yàn)中,由于試驗(yàn)誤差較大,常采用SSR法;

F檢驗(yàn)顯著后,為了簡(jiǎn)便,也可采用LSD法。第38頁(yè),共43頁(yè),2023年,2月20日,星期一

此法是將多重比較結(jié)果直接標(biāo)記在平均數(shù)多重比較表上,如表8.8所示。由于在多重比較表中各個(gè)平均數(shù)差數(shù)構(gòu)成一個(gè)三角形陣列,故稱為三角形法。此法的優(yōu)點(diǎn)是簡(jiǎn)便直觀,缺點(diǎn)是占的篇幅較大。

1、三角形法(三)多重比較結(jié)果的表示方法第39頁(yè),共43頁(yè),2023年,2月

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論