版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.2.如圖,為的直徑,為上兩點,若,則的大小為().A.60° B.50° C.40° D.20°3.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣24.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為25.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.6.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設(shè)半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元7.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:68.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.9.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.10.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.12.分解因式:3x3﹣27x=_____.13.比較大?。篲__1.(填“>”、“<”或“=”)14.在不透明的口袋中有若干個完全一樣的紅色小球,現(xiàn)放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據(jù)此估計該口袋中原有紅色小球個數(shù)為_____.15.若關(guān)于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.16.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.18.(8分)“鐵路建設(shè)助推經(jīng)濟發(fā)展”,近年來我國政府十分重視鐵路建設(shè).渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設(shè)計運行時速比原鐵路設(shè)計運行時速提高了120千米/小時,全程設(shè)計運行時間只需8小時,比原鐵路設(shè)計運行時間少用16小時.(1)渝利鐵路通車后,重慶到上海的列車設(shè)計運行里程是多少千米?(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應(yīng)對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.19.(8分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)20.(8分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結(jié)AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.21.(8分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.22.(10分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.23.(12分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.24.襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).m=,n=;求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)絕對值的性質(zhì)進行解答即可.【詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關(guān)鍵.2、B【解析】
根據(jù)題意連接AD,再根據(jù)同弧的圓周角相等,即可計算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.【點睛】本題主要考查圓弧的性質(zhì),同弧的圓周角相等,這是考試的重點,應(yīng)當熟練掌握.3、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應(yīng)的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關(guān)鍵.4、A【解析】
根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.5、B【解析】
比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關(guān)鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.6、D【解析】
設(shè)y與x之間的函數(shù)關(guān)系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據(jù)題意設(shè)y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數(shù)的應(yīng)用,解答時求出函數(shù)的解析式是關(guān)鍵.7、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.8、B【解析】
按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數(shù)形結(jié)合思想是初中常用的方法之一.9、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關(guān)鍵.10、C【解析】
根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點睛】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關(guān)于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用.12、3x(x+3)(x﹣3).【解析】
首先提取公因式3x,再進一步運用平方差公式進行因式分解.【詳解】3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).【點睛】本題考查用提公因式法和公式法進行因式分解的能力.一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、<.【解析】
根據(jù)算術(shù)平方根的定義即可求解.【詳解】解:∵=1,∴<=1,∴<1.故答案為<.【點睛】考查了算術(shù)平方根,非負數(shù)a的算術(shù)平方根a有雙重非負性:①被開方數(shù)a是非負數(shù);②算術(shù)平方根a本身是非負數(shù).14、20【解析】
利用頻率估計概率,設(shè)原來紅球個數(shù)為x個,根據(jù)摸取30次,有10次摸到白色小球結(jié)合概率公式可得關(guān)于x的方程,解方程即可得.【詳解】設(shè)原來紅球個數(shù)為x個,則有=,解得,x=20,經(jīng)檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應(yīng)用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關(guān)鍵.15、0或-1。【解析】由于沒有交待是二次函數(shù),故應(yīng)分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點。當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即。綜上所述,若關(guān)于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1。16、﹣1<x<2【解析】
根據(jù)圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數(shù)與不等式,關(guān)鍵是根據(jù)圖象得出取值范圍.三、解答題(共8題,共72分)17、(1)36,40,1;(2).【解析】
(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權(quán)平均數(shù)的概念計算訓(xùn)練后籃球定時定點投籃人均進球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;
該班共有學(xué)生(2+1+7+4+1+1)÷10%=40人;
訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是=1,
故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結(jié)果,選中兩名學(xué)生恰好是兩名男生(記為事件M)的結(jié)果有6種,∴P(M)==.18、(1)1600千米;(2)1【解析】試題分析:(1)利用“從重慶到上海比原鐵路全程縮短了320千米,列車設(shè)計運行時速比原鐵路設(shè)計運行時速提高了l20千米/小時,全程設(shè)計運行時間只需8小時,比原鐵路設(shè)計運行時間少用16小時”,分別得出等式組成方程組求出即可;
(2)根據(jù)題意得出方程(80+120)(1-m%)(8+m%)=1600,進而解方程求出即可.試題解析:(1)設(shè)原時速為xkm/h,通車后里程為ykm,則有:,解得:.答:渝利鐵路通車后,重慶到上海的列車設(shè)計運行里程是1600千米;(2)由題意可得出:(80+120)(1﹣m%)(8+m%)=1600,解得:m1=1,m2=0(不合題意舍去),答:m的值為1.19、見解析【解析】
三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【詳解】作∠CDP=∠BCD,PD與AC的交點即P.【點睛】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進行解題.20、(1)∠EAD的余切值為;(2)=.【解析】
(1)在Rt△ADB中,根據(jù)AB=13,cos∠BAC=,求出AD的長,由勾股定理求出BD的長,進而可求出DE的長,然后根據(jù)余切的定義求∠EAD的余切即可;(2)過D作DG∥AF交BC于G,由平行線分線段成比例定理可得CD:AD=CG:FG=3:5,從而可設(shè)CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【詳解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中點,∴ED=6,∴∠EAD的余切==;(2)過D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,設(shè)CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==.【點睛】本題考查了勾股定理,銳角三角函數(shù)的定義,平行線分線段成比例定理.解(1)的關(guān)鍵是熟練掌握銳角三角函數(shù)的概念,解(2)的關(guān)鍵是熟練掌握平行線分線段成比例定理.21、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據(jù)題意和矩形的周長公式列出代數(shù)式解答即可.(2)根據(jù)題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數(shù)式問題、平方差公式等,解題的關(guān)鍵是根據(jù)題意和矩形的性質(zhì)列出代數(shù)式解答.22、(1)證明見解析;(2)能;BE=1或;(3)【解析】
(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.23、(1)見解析;(2).【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設(shè)OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 的公司借款合同模板
- 2025建設(shè)工程施工勞務(wù)分包合同管理培訓(xùn)
- 二零二五年酒店集團食堂整體承包經(jīng)營協(xié)議
- 2025-2030年中國麻紡行業(yè)市場規(guī)模調(diào)研及投資潛力分析報告
- 2025-2030年中國馬桶產(chǎn)業(yè)市場現(xiàn)狀分析及發(fā)展前景規(guī)劃研究報告
- 2025-2030年中國鐵路養(yǎng)護機械產(chǎn)業(yè)發(fā)展現(xiàn)狀及前景規(guī)劃研究報告
- 2025-2030年中國運輸皮帶機產(chǎn)業(yè)前景規(guī)模分析及未來趨勢預(yù)測報告
- 2025-2030年中國軟裝行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告新版
- 二零二五年度酒店布草批發(fā)與零售一體化服務(wù)合同3篇
- 2025-2030年中國苗木類市場前景展望及未來投資規(guī)劃研究報告
- 2025年中國高純生鐵行業(yè)政策、市場規(guī)模及投資前景研究報告(智研咨詢發(fā)布)
- 2022-2024年浙江中考英語試題匯編:完形填空(學(xué)生版)
- 2025年廣東省廣州市荔灣區(qū)各街道辦事處招聘90人歷年高頻重點提升(共500題)附帶答案詳解
- 中試部培訓(xùn)資料
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報告
- 央視網(wǎng)2025亞冬會營銷方案
- 北師大版數(shù)學(xué)三年級下冊豎式計算題100道
- 計算機網(wǎng)絡(luò)技術(shù)全套教學(xué)課件
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應(yīng)對措施
- 胃鏡下超聲穿刺護理配合
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(原卷版)
評論
0/150
提交評論