外文翻譯-汽車(chē)散熱器性能_第1頁(yè)
外文翻譯-汽車(chē)散熱器性能_第2頁(yè)
外文翻譯-汽車(chē)散熱器性能_第3頁(yè)
外文翻譯-汽車(chē)散熱器性能_第4頁(yè)
外文翻譯-汽車(chē)散熱器性能_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

畢業(yè)設(shè)計(jì)(論文)外文參考資料及譯文譯文題目:AutomotiveRadiatorPerformance汽車(chē)散熱器性能學(xué)生姓名:學(xué)號(hào):專(zhuān)業(yè):所在學(xué)院:指導(dǎo)教師:職稱(chēng):20xx年2月27日

AutomotiveRadiatorPerformanceAbstract—Automotiveenginecoolingsystemtakescareofexcessheatproducedduringengineoperation.Itregulatesenginesurfacetemperatureforengineoptimumefficiency.Recentadvancementinengineforpowerforcedenginecoolingsystemtodevelopnewstrategiestoimproveitsperformanceefficiency.Alsotoreducefuelconsumptionalongwithcontrollingengineemissiontomitigateenvironmentalpollutionnorms.Thispaperthrowslightonparameterswhichinfluenceradiatorperformancealongwithreviewssomeoftheconventionalandmodernapproachestoenhanceradiatorperformance.IndexTerms—Automotiveenginecoolingsystem,Performance,RadiatorI.INTRODUCTIONAutomotiveenginecoolingsystemtakescareofexcessheatproducedduringengineoperation.Itregulatesenginesurfacetemperatureforengineoptimumefficiency.Mostautomotiveenginecoolingsystemsconsistoftheradiator,waterpump,coolingfan,pressurecapandthermostat.Radiatoristheprimecomponentofthesystem.Radiatorisaheatexchangerthatremovesheatfromenginecoolantpassingthroughit.Heatistransferredfromhotcoolanttooutsideair.Radiatorassemblyconsistsofthreemainpartscore,inlettankandoutlettank.Corehastwosetsofpassage,asetoftubesandasetoffins.Coolantflowsthroughtubesandairflowsbetweenfins.Thehotcoolantsendsheatthroughtubestofins.Outsideairpassingbetweenfinspickupsandcarriesawayheat.ManuscriptreceivedFebruary,2013.PawanS.Amrutkar,DepartmentofMechanicalEngineering,SinhgadAcademyofEngineering,UniversityofPune,India.SangramR.Patil,DepartmentofMechanicalEngineering,SinhgadAcademyofEngineering,UniversityofPune,India.Performanceofenginecoolingsystemisinfluencedbyfactorslikeairandcoolantmassflowrate,airinlettemperature,coolantfluid,fintype,finpitch,tubetypeandtubepitchetc.Whiledesigningcoolingsystemthreeworstconditionsconsideredbasedonaboveparameters.Highaltitude:Athighaltitude,airdensitybecomeslowandhenceaffectsairmassflowrate.Summerconditions:Duringsummersurroundingairishoti.e.airinlettemperatureismore.Maximumpower:Engineconditionproducingmaximumpowerlikewhenvehicleisclimbinguphill,maximumheatrejectionisrequiredduringthiscondition.Tocompensateallthesefactorsradiatorcoresizerequiredmaybelarge.II.LITERATUREREVIEWC.Oliet,A.Oliva,J.Castro,C.D.studieddifferentfactorswhichinfluenceradiatorperformance.Itincludesairandcoolantflow,findensityandairinlettemperature.Itisobservedthatheattransferandperformanceofradiatorstronglyaffectedbyairandcoolantmassflowrate.Asairandcoolantflowincreasescoolingcapacityalsoincreases.Whenairinlettemperatureincreases,heattransferandthuscoolingcapacitydecreases.Smallerfinspacingandhigherlouverfinanglehavehigherheattransfer.Findensitycanbeincreasedtillitblockstheairflowandheattransferratedecreases.JPYadavandBharatRajSinghintheirstudiesalsopresentedparametricstudyonautomotiveradiator.Intheperformanceevaluation,aradiatorisinstalledintoatestsetup.Thevariousparametersincludingmassflowrateofcoolant,inletcoolanttemperature;etc.arevaried.Followingremarksareobservedduringstudy:Influenceofcoolantmassflowcoolingcapacityoftheradiatorhasdirectrelationwiththecoolantflowrate.Withanincreaseinthevalueofcoolingflowrate,thereiscorrespondingincreaseinthevalueoftheeffectivenessandcoolingcapacity.Influenceofcoolantinlettemperaturewiththeincreaseintheinlettemperatureofthecoolantthecoolingcapacityoftheradiatorincreases.MazenAl-Amayrehinhisstudy,testedthethermalconductivitiesofethyleneglycol+water,diethyleneglycol+waterandtriethyleneglycol+watermixtures,measuredattemperaturesrangingfrom25°Cto40°Candconcentrationsrangingfrom25wt.%glycolto75wt.%glycol.Increasingtheconcentrationofglycolleadstodecreaseofthermalconductivity.Increasingthetemperatureofmixtureresultedinslightincreaseinthermalconductivity.Thevarioustechniquesareusedtoenhancetheperformanceofautomotiveenginecoolingsystem.Itmaybeeitherconventionalormodernapproach.Conventionalapproachreliesonfin,tubeandfandesignoptimization.Moderntechniquesarebasedonnewtechnologieslikenano-technology,heatloadaveragingcapacityoractuatorbasedenginecoolingsystem.Thispaperreviewssomeoftheconventionalandmodernapproachesfocusingonradiatorperformanceenhancement.P.K.Trivedi,N.B.VasavaillustratedtheeffectofTubepitchforbestconfiguredradiatorforoptimumperformance.Heattransferincreasesasthesurfaceareaoftheradiatorassemblyisincreased.Thisleadstochangethegeometrybymodifyingthearrangementoftubesinautomobileradiatortoincreasethesurfaceareaforbetterheattransfer.ThemodificationinarrangementoftubesinradiatoriscarriedoutbystudyingtheeffectofpitchoftubebyCFDanalysisusingCFX.ResultsShowsthatasthepitchoftubeiseitherdecreasedorincreasedthanoptimumpitchoftubes,theheattransferratedecreases.PitambarGadhveandShambhuKumardescribeduseofdimplesurfacetoimproveforcedconvectionheattransfer.Heattransferenhancementisbasedonprincipleofscrubbingactionofcoolingfluidinsidethedimple.Surfacedimplespromoteturbulentmixinginflowandenhanceheattransfer.Anexperimentalsetuphasbeendesignedandfabricatedtostudyeffectofdimpledsurfaceonheattransferinrectangularduct.Resultscomparedwithflatsurfacetubeandfoundheattransferenhancementoverthelaterone.P.Gunnasegaran,N.H.Shuaib,andM.F.AbdulJalalintheirstudynumericalsimulationsonfluidflowandheattransfercharacteristicsoverlouveranglefinCompactHeatExchangersarereported.Acomputationaldomainfromthefluidinlettooutletissolved.Theimpactsofusingvariablelouverangles(+2°,+4°,?2°,?4°,anduniformangle20°)andlouveredfinwithvariablefinpitches(1mm,2mm,and4mm)onboththermalandhydraulicofCHEarepresented.TheNusseltnumberishigherforincreasedordecreasedlouveranglecomparedtouniformlouverangle.ThevariablelouveranglepatternsandlouverfinwithsmallerpitchappliedinCHEscouldeffectivelyenhancetheheattransferperformancewithmoderatedegradationofpressuredroppenaltycomparedtoplainfinsurfaceofCHE.Prof.D.K.Chavan,Prof.Dr.G.S.Tasgaonkarexplainedconventionalradiatorsizeisrectangularwhichisdifficultforcircularfantocoverwholesurfacearea.Itcreateslowervelocityzonesatcornersgivinglessheattransfer.Authorhasproposedtoeliminatecornersanddevelopcircularshaperadiatorwhichiscompact,moreefficientandleadstominimumpowerconsumptiontodriveafanandmaximumutilizationofairflow.Consideringlimitationsofconventionaltechniquestoimprovecoolingsystemperformancevariousnewtechnologiesareadopted.Researchisgoingontostabilizetheresults.K.Y.Leong,R.Saidur,S.N.Kazi,A.H.Mamundescribeduseofnanofluidbasedcoolantinenginecoolingsystemanditseffectoncoolingcapacity.Itisfoundthatnano-fluidhavinghigherthermalconductivitythanbasecoolantlike50%/50%waterandethyleneglycol.Itincreasesheattransfer.Soforsameheattransfer,radiatorcoreareacanbereducedcomparedtobaseone.Itfindsbettersolutiontominimizearea.Thermalperformanceofaradiatorusingnanofluidisincreasedwithincreaseinpumpingpowerrequiredcomparedtosameradiatorusingethyleneglycolascoolant.JohnVetroveccarriedworkonenginecoolingsystemwithheatloadaveragingcapacityusingpassiveheatloadaccumulator.Heatloadaccumulatorisphasechangematerialwhichstoresheatgeneratedduringpeakanddissipatesstoredheatduringreducedheatloadcondition.ThisisachievedbysacrificingphasechangeofPCMfromsolidtoliquidorviceversa.Thisleadstocompactheatexchangerforsameheatrejection.Alsoitreducesloadoncoolingsystem.Systemcanhandlehightransientloadsandpermitsfasterwarmupduringcoldenginestart.M.H.Salah,P.M.Frick,J.R.Wagner,D.M.Dawsondiscussedabouthydraulicactuatedcoolingsystem.Actuatorscanimprovetemperaturetrackingandreduceparasiticlosses.Actuatorbasedenginecoolingsystemusescontrollertocontrolcoolantpumpandradiatorfanoperatingconditions.Itprovidespowertosystemcomponentasperrequirement.Thusitregulatespowerconsumptionofsystemcomponentwithcoolingcapacity.Anonlinearbacksteppingrobustcontrollerisusedtoregulateenginecoolanttemperatureinhydraulicbasedthermalmanagementsystem.Proposedcontrollermaintainedthecoolanttemperaturetoitssetpointwithsystemimprovement.Useofthissystemoffersgreaterpowerdensitywithcompactinnature.III.FUTURESCOPEEnginecoolingsystemcancontributeinsomeoftheengineaspectslikereductioninfuelconsumptionthusminimizingexhaustandfuelemission.Thiscanbeachievedbykeepingengineatoptimumthermaloperatingconditions.Alsothermalloadonengine,enginecomponents,lubricatingfluidcanbereduced.Effectiveenginecoolingsystemcanhelptoshortenenginewarmupperiodduringcoldstartandheatlossrecoverytoimprovedrivingcomfort.Reductioninweightandrequiredspacetofitsystemonavehicleisthemostchallengingtaskindevelopingcoolingsystem.Alsoeffortstobetakentoimplementuseofemergingtechnologieslikenano-technologyandtostabilizetheresultsofthesesystems.Inshort,futurechallengesincludedevelopingmorecompact,lightweight,improvedperformanceandeconomicalenginecoolingsystem.IV.PROPOSEDWORKTheproposedworkisconcernedwithdevelopingexcelsheettocalculateheatrejection.Fewinputparameterswillgiveexactidearegardingheatrejection.Sheetwillhelptoestimateeffectofvaryingtubeandfindensity,coolantflowrateetc.onheatrejection.Theoreticalcalculationofradiatorcoresizeandheatrejectionforagivenengineinputs.Validationofcoresizebysimulationsoftwareandcomparingtheoreticalheatrejectionwithsimulationresults.Optimizingcoresizeasperheatrejectionrequirement.3Dmodelingofradiatorcomponentsheader,tubes,finsandtanks.Finiteelementanalysisofradiatortotestitsrobustnessforthermalandpressureloads.Prototypedevelopmenttovalidatetheradiatorperformance.[1]C.Oliet,A.Oliva,J.Castro,C.D.Pe′rez-Segarra,―Parametricstudiesonautomotiveradiators‖,AppliedThermalEngineering,27,2007[2]JPYadavandBharatRajSingh,―StudyonPerformanceEvaluationofAutomotiveRadiator‖,S-JPSET:ISSN:2229-7111,Vol.2,Issue2,2011[3]MazenAl-Amayreh,―ExperimentalStudyofThermalConductivityofEthyleneGlycolWaterMixtures‖,EuropeanJournalofScientificResearch,ISSN1450-216XVol.44No.2,2011[4]P.K.Trivedi,N.B.Vasava,―EffectofVariationinPitchofTubeonHeatTransferRateinAutomobileRadiatorbyCFDAnalysis‖,InternationalJournalofEngineeringandAdvancedTechnology(IJEAT)ISSN:2249–8958,Volume-1,Issue-6,2012[5]PitambarGadhave,ShambhuKumar,―EnhancementofforcedConvectionHeatTransferoverDimpleSurface–Review‖,InternationalMultidisciplinarye–Journal,2012[6]P.Gunnasegaran,N.H.Shuaib,andM.F.AbdulJalal.―TheEffectofGeometricalParametersonHeatTransferCharacteristicsofCompactHeatExchangerwithLouveredFins‖,ISRNThermodynamics,Volume2012[7]Prof.D.K.Chavan,Prof.Dr.G.S.Tasgaonkar,―ThermalOptimizationofFanassistedHeatExchanger(Radiator)byDesignImprovements‖,InternationalJournalofModernEngineeringResearch(IJMER),Vol.1,Issue1,2011[8]K.Y.Leong,R.Saidur,S.N.Kazi,A.H.Mamun,―Performanceinvestigationofanautomotivecarradiatoroperatedwithnanofluidbasedcoolants(nanofluidasacoolantinaradiator)”,AppliedThermalEngineering,30,2010[9]JohnVetrovec,―EngineCoolingSystemwithaHeatLoadAveragingCapability‖,SAEInternational,2008[10]M.H.Salah,P.M.Frick,J.R.Wagner,D.M.Dawson,―Hydraulicactuatedautomotivecoolingsystems—Nonlinearcontrolandtest‖,ControlEngineeringPractice,17,2009汽車(chē)散熱器性能摘要:汽車(chē)發(fā)動(dòng)機(jī)冷卻系統(tǒng)是負(fù)責(zé)帶走發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)過(guò)程中產(chǎn)生的多余的熱量。它調(diào)節(jié)發(fā)動(dòng)機(jī)的表面溫度,來(lái)使發(fā)動(dòng)機(jī)達(dá)到的最佳效率。最近隨著發(fā)動(dòng)機(jī)動(dòng)力的發(fā)展迫使發(fā)動(dòng)機(jī)冷卻系統(tǒng)提出新的策略來(lái)改進(jìn)其性能效率。也可以通過(guò)減少燃料消耗以及控制發(fā)動(dòng)機(jī)排放,減輕環(huán)境污染。本文闡述了參數(shù)影響散熱器性能以及評(píng)論的一些傳統(tǒng)和現(xiàn)代的方法來(lái)提高散熱器的性能。指數(shù)—發(fā)動(dòng)機(jī)冷卻系統(tǒng)、性能、散熱器一、介紹汽車(chē)發(fā)動(dòng)機(jī)冷卻系統(tǒng)負(fù)責(zé)發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)過(guò)程中產(chǎn)生的余熱。它調(diào)節(jié)發(fā)動(dòng)機(jī)表面溫度對(duì)發(fā)動(dòng)機(jī)最佳效率。大多數(shù)汽車(chē)發(fā)動(dòng)機(jī)冷卻系統(tǒng)由散熱器、水泵、冷卻風(fēng)扇、壓力上限和恒溫器。散熱器是系統(tǒng)的主要組件。散熱器是一個(gè)熱交換器,冷卻液通過(guò)它帶走發(fā)動(dòng)機(jī)中的熱量。熱量從熱冷卻劑轉(zhuǎn)移到外面的空氣。散熱器總成由三個(gè)主要部分組成核心,進(jìn)口箱和出口。核心有兩套,一套管子和風(fēng)扇。冷卻劑流過(guò)管子和風(fēng)扇之間的空氣流。熱冷卻劑將熱量傳遞至風(fēng)扇。外部空氣通過(guò)風(fēng)扇之間氣流帶走體內(nèi)的熱量。發(fā)動(dòng)機(jī)冷卻系統(tǒng)的性能的影響因素,比如空氣和冷卻劑質(zhì)量以及流率,進(jìn)氣溫度,冷卻液,風(fēng)扇類(lèi)型、翅片間距、管式和管間距等。在設(shè)計(jì)冷卻系統(tǒng)三個(gè)最基本的條件是基于以上參數(shù)。高海拔:在高空,空氣密度低,因此會(huì)影響空氣質(zhì)量流率。夏天條件:在夏季周?chē)諝馐菬峒催M(jìn)氣溫度。最大力量:發(fā)動(dòng)機(jī)最大功率的生產(chǎn)條件如車(chē)輛爬上坡時(shí),最大熱扭矩在這個(gè)條件是必需的??紤]所有這些因素,所需要的散熱器核心尺寸可能很大。二、文獻(xiàn)綜述C.Oliet,A.Oliva,J.Castro,C.D研究不同因素影響散熱器性能。它包括空氣和冷卻液流,風(fēng)扇和空氣入口溫度。這是觀(guān)察到散熱器的傳熱和性能受到空氣和冷卻劑質(zhì)量流率的影響很大。隨著空氣和冷卻液流增加,冷卻能力也增加。當(dāng)空氣進(jìn)口溫度的增加,傳熱,從而冷卻能力降低。小翅片間距和更高的百葉窗式翅片角有較高的傳熱。風(fēng)扇密度可以增加直到空氣流動(dòng)和傳熱速率降低。JPYadav和BharatRajSingh在他們的研究也提出了參數(shù)研究汽車(chē)散熱器。在散熱器的安裝測(cè)試中得到散熱性能參數(shù)。冷卻劑的各種參數(shù)包括質(zhì)量流率,進(jìn)氣冷卻劑溫度;等多種多樣。以下評(píng)論期間觀(guān)察研究:冷卻液質(zhì)量流量的冷卻能力的影響散熱器與冷卻劑流量有直接關(guān)系。與冷卻流量的價(jià)值,有相應(yīng)增加的效果和冷卻能力的價(jià)值。冷卻液入口溫度的影響提高入口溫度的冷卻液散熱器的冷卻能力增加。MazenAl-Amayreh在他的研究中發(fā)現(xiàn),經(jīng)過(guò)測(cè)試乙二醇+水的熱導(dǎo)率,二甘醇+水和三甘醇+水混合物,測(cè)量溫度從25°C到40°C和濃度范圍從25wt%乙二醇75wt%乙二醇。醇濃度的增加會(huì)導(dǎo)致熱導(dǎo)率降低。增加混合物的溫度能夠少量的增加熱導(dǎo)率。傳統(tǒng)的或現(xiàn)代的方法都能夠用來(lái)提高汽車(chē)發(fā)動(dòng)機(jī)冷卻系統(tǒng)的性能。傳統(tǒng)的方法依賴(lài)于風(fēng)扇,管和風(fēng)扇設(shè)計(jì)優(yōu)化?,F(xiàn)代技術(shù)是基于新技術(shù)如納米技術(shù)、熱負(fù)荷平均容量或發(fā)動(dòng)機(jī)冷卻系統(tǒng)執(zhí)行機(jī)構(gòu)的建立。本文綜述的一些傳統(tǒng)和現(xiàn)代方法主要用來(lái)增強(qiáng)散熱器性能。P.K.Trivedi,N.B.Vasava認(rèn)為管間距的最佳配置能夠讓散熱器發(fā)揮最高性能。傳熱表面積增加會(huì)改變散熱器裝配。這導(dǎo)致改變管子的幾何形狀或者通過(guò)修改汽車(chē)散熱器的排布可以使表面積增加更好的傳熱。協(xié)議的修改管散熱器是由學(xué)習(xí)管距的影響通過(guò)CFD分析使用它。結(jié)果表明,管間距的減少或增加比最佳距管,傳熱率降低。PitambarGadhve和ShambhuKumar稱(chēng)使用凹槽提高強(qiáng)制對(duì)流傳熱表面。強(qiáng)化傳熱技術(shù)基于冷卻液與凹槽的摩擦。表面凹槽促進(jìn)流動(dòng)和湍流混合增強(qiáng)傳熱。研究實(shí)驗(yàn)設(shè)置了帶凹槽的和普通矩形的散熱性能對(duì)比。實(shí)驗(yàn)結(jié)果與平面管對(duì)比之后,發(fā)現(xiàn)帶有凹槽的傳熱增強(qiáng)。p.Gunnasegaran:h.Shuaib,m·f和M.F.AbdulJalal在他們的研究中說(shuō)道在流體流動(dòng)和傳熱特性數(shù)值模擬百葉窗角度緊湊熱交換器。從流體計(jì)算域入口出口是解決。使用變量的影響百葉窗角度(+2°,+4°,-2°,-4°,和統(tǒng)一的角度20°)變量和裝有百葉窗板的鰭鰭球(1毫米,2毫米和4毫米)的熱力和水力切。增加或減少的努塞爾特?cái)?shù)較高百葉窗角度而統(tǒng)一的百葉窗角度。變量模式和百葉窗式翅片百葉窗角度較小;該應(yīng)用能有效地提高傳熱性能與中度退化的壓降比平翅片表面切處罰。Prof.D.K.Chavan,Prof.Dr.G.S.博士解釋說(shuō)傳統(tǒng)散熱器大小循環(huán)風(fēng)扇難以覆蓋矩形整個(gè)表面。它創(chuàng)造了低速度區(qū)角落給更少的熱量轉(zhuǎn)移。作者提出了消除角落和發(fā)展更為緊湊的圓形散熱器,來(lái)提高效率,以便達(dá)到最小功耗驅(qū)動(dòng)風(fēng)扇和最大利用氣流??紤]傳統(tǒng)技術(shù)的局限性,提高冷卻系統(tǒng)性能采用各種新技術(shù)。研究逐漸變成現(xiàn)實(shí)。K.Y.Leong,R.Saidur,S.N.Kazi,A.H.Mamun描述使用基于nanofluid冷卻液在發(fā)動(dòng)機(jī)冷卻系統(tǒng)及其對(duì)冷卻能力的影響。發(fā)現(xiàn)thatnano-fluid有更高的熱導(dǎo)率比基礎(chǔ)冷卻劑50%/50%水和乙二醇。它具有更好的導(dǎo)熱性。對(duì)于相同的傳熱,散熱器核心區(qū)域相比可以減少基地之一。找到更好的解決方案來(lái)減少區(qū)域。使用nanofluid散熱器的熱性能相比相同泵功率使用乙二醇作為冷卻劑的散熱器要好很多。JohnVetrovec使用熱負(fù)荷蓄電池發(fā)動(dòng)機(jī)冷卻系統(tǒng)的被動(dòng)進(jìn)行熱負(fù)荷平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論