2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第1頁
2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第2頁
2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第3頁
2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第4頁
2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆四川省成都金牛區(qū)五校聯(lián)考中考數(shù)學(xué)模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應(yīng)是()A.110 B.158 C.168 D.1782.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當(dāng)1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.43.2018年1月,“墨子號”量子衛(wèi)星實現(xiàn)了距離達7600千米的洲際量子密鑰分發(fā),這標(biāo)志著“墨子號”具備了洲際量子保密通信的能力.?dāng)?shù)字7600用科學(xué)記數(shù)法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1024.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.5.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.6.關(guān)于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥37.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.8.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當(dāng)我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.9.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.110.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.3二、填空題(共7小題,每小題3分,滿分21分)11.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.12.計算:6﹣=_____13.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.14.不等式組x-2>0①2x-6>2②15.分解因式:x2﹣1=____.16.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.17.9的算術(shù)平方根是.三、解答題(共7小題,滿分69分)18.(10分)解不等式組并寫出它的整數(shù)解.19.(5分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?20.(8分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)21.(10分)在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數(shù)對稱軸上點,求出使△PBC周長最小時,點P的坐標(biāo).22.(10分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標(biāo);(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標(biāo).23.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.24.(14分)我省有關(guān)部門要求各中小學(xué)要把“陽光體育”寫入課表,為了響應(yīng)這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少名學(xué)生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有400名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡籃球活動的人數(shù)約為多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.2、B【解析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當(dāng)x=1時,y=1+b+c=1,故②錯誤?!弋?dāng)x=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?dāng)1<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個,故選B。3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、A【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到黃球的有4種結(jié)果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.5、C【解析】

根據(jù)已知三點和近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應(yīng)用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關(guān)鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.6、A【解析】分析:根據(jù)關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.7、A【解析】

通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.8、D【解析】試題解析:設(shè)現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組9、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,及一元二次方程的解,熟記根與系數(shù)關(guān)系的公式.10、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【點睛】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.12、3【解析】

按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關(guān)鍵是注意化簡算式.13、2【解析】

先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、x>4【解析】

分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.15、(x+1)(x﹣1).【解析】試題解析:x2﹣1=(x+1)(x﹣1).考點:因式分解﹣運用公式法.16、3﹣【解析】

首先設(shè)點B的橫坐標(biāo),由點B在拋物線y1=x2(x≥0)上,得出點B的坐標(biāo),再由平行,得出A和C的坐標(biāo),然后由CD平行于y軸,得出D的坐標(biāo),再由DE∥AC,得出E的坐標(biāo),即可得出DE和AB,進而得解.【詳解】設(shè)點B的橫坐標(biāo)為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標(biāo)求解,關(guān)鍵是利用平行的性質(zhì).17、1.【解析】

根據(jù)一個正數(shù)的算術(shù)平方根就是其正的平方根即可得出.【詳解】∵,∴9算術(shù)平方根為1.故答案為1.【點睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的概念是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、不等式組的解集是5<x≤1,整數(shù)解是6,1【解析】

先分別求出兩個不等式的解,求出解集,再根據(jù)整數(shù)的定義得到答案.【詳解】∵解①得:x>5,解不等式②得:x≤1,∴不等式組的解集是5<x≤1,∴不等式組的整數(shù)解是6,1.【點睛】本題考查求一元一次不等式組,解題的關(guān)鍵是掌握求一元一次不等式組的方法19、裁掉的正方形的邊長為2dm,底面積為12dm2.【解析】試題分析:設(shè)裁掉的正方形的邊長為xdm,則制作無蓋的長方體容器的長為(10-2x)dm,寬為(6-2x)dm,根據(jù)長方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長.試題解析:設(shè)裁掉的正方形的邊長為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長為2dm,底面積為12dm2.20、3.05米.【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點:解直角三角形的應(yīng)用.21、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當(dāng)P點坐標(biāo)為(﹣,)時,△PBC周長最小【解析】

(1)設(shè)交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;

(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;

(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數(shù)法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應(yīng)的函數(shù)值即可得到P點坐標(biāo).【詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當(dāng)x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設(shè)直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當(dāng)x=﹣時,y=x+2=,則P(﹣,)∴當(dāng)P點坐標(biāo)為(﹣,)時,△PBC周長最?。军c睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化解.關(guān)于x的一元二次方程即可求得交點橫坐標(biāo).也考查了待定系數(shù)法求二次函數(shù)解析式和最短路徑問題.22、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點C的坐標(biāo),再由OA=OC得到點A的坐標(biāo),再根據(jù)拋物線的對稱性得到點B的坐標(biāo),利用待定系數(shù)法求得解析式后再進行配方即可得到頂點坐標(biāo);(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題解析:(1)當(dāng)x=0時,拋物線y=ax2+bx+3=3,所以點C坐標(biāo)為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關(guān)于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).23、(1)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論