版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.2.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時(shí)再沿與出發(fā)時(shí)一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°3.如圖所示,把直角三角形紙片沿過頂點(diǎn)B的直線(BE交CA于E)折疊,直角頂點(diǎn)C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點(diǎn)C與AB的中點(diǎn)重合;③點(diǎn)E到AB的距離等于CE的長(zhǎng),正確的個(gè)數(shù)是()A.0 B.1 C.2 D.34.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.5.如圖,已知BD與CE相交于點(diǎn)A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長(zhǎng)等于()A.4 B.9 C.12 D.166.如圖所示,,結(jié)論:①;②;③;④,其中正確的是有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點(diǎn)P是斜邊AB上一點(diǎn).過點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.8.第24屆冬奧會(huì)將于2022年在北京和張家口舉行,冬奧會(huì)的項(xiàng)目有滑雪(如跳臺(tái)滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.9.某市公園的東、西、南、北方向上各有一個(gè)入口,周末佳佳和琪琪隨機(jī)從一個(gè)入口進(jìn)入該公園游玩,則佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率是()A. B. C. D.10.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠3二、填空題(共7小題,每小題3分,滿分21分)11.如果兩個(gè)相似三角形對(duì)應(yīng)邊上的高的比為1:4,那么這兩個(gè)三角形的周長(zhǎng)比是___.12.如圖,在矩形ABCD中,E、F分別是AD、CD的中點(diǎn),沿著BE將△ABE折疊,點(diǎn)A剛好落在BF上,若AB=2,則AD=________.13.已知關(guān)于x的不等式組只有四個(gè)整數(shù)解,則實(shí)數(shù)a的取值范是______.14.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進(jìn)行無滑動(dòng)滾動(dòng),使半圓的直徑與直線b重合為止,則圓心O運(yùn)動(dòng)路徑的長(zhǎng)度等于_____.15.不等式組的最大整數(shù)解是__________.16.如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,頂點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)Q在對(duì)角線OB上,若OQ=OC,則點(diǎn)Q的坐標(biāo)為_______.17.拋物線y=(x﹣3)2+1的頂點(diǎn)坐標(biāo)是____.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當(dāng)a為何值時(shí),方程的根僅有唯一的值?求出此時(shí)a的值及方程的根.19.(5分)為紀(jì)念紅軍長(zhǎng)征勝利81周年,我市某中學(xué)團(tuán)委擬組織學(xué)生開展唱紅歌比賽活動(dòng),為此,該校隨即抽取部分學(xué)生就“你是否喜歡紅歌”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如下統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20請(qǐng)你根據(jù)統(tǒng)計(jì)圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學(xué)生參加問卷調(diào)查:(2)確定統(tǒng)計(jì)表中a、b的值:a=,b=;(3)該校共有2000名學(xué)生,估計(jì)全校態(tài)度為“非常喜歡”的學(xué)生人數(shù).20.(8分)全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了解揭陽市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷內(nèi)容包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散步;E:不運(yùn)動(dòng).以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分,運(yùn)動(dòng)形式ABCDE人數(shù)請(qǐng)你根據(jù)以上信息,回答下列問題:接受問卷調(diào)查的共有人,圖表中的,.統(tǒng)計(jì)圖中,類所對(duì)應(yīng)的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運(yùn)動(dòng)場(chǎng)所之一,每天都有“暴走團(tuán)”活動(dòng),若某社區(qū)約有人,請(qǐng)你估計(jì)一下該社區(qū)參加環(huán)島路“暴走團(tuán)”的人數(shù).21.(10分)如圖,已知,,.求證:.22.(10分)某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問題:(1)這次調(diào)查一共抽取了名學(xué)生,其中安全意識(shí)為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是;(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有名.23.(12分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開矩形紙片,并連接EF.的長(zhǎng)為多少;求AE的長(zhǎng);在BE上是否存在點(diǎn)P,使得的值最???若存在,請(qǐng)你畫出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說明理由.24.(14分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動(dòng)至A點(diǎn)停止,則從運(yùn)動(dòng)開始經(jīng)過多少時(shí)間,△BEP為等腰三角形.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)函數(shù)的圖象和所給出的圖形分別對(duì)每一項(xiàng)進(jìn)行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢(shì)變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項(xiàng)正確.故選:D.【點(diǎn)睛】本題主要考查函數(shù)模型及其應(yīng)用.2、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點(diǎn)睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.3、D【解析】
根據(jù)翻折變換的性質(zhì)分別得出對(duì)應(yīng)角相等以及利用等腰三角形的性質(zhì)判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點(diǎn)B的直線(BE交CA于E)折疊,直角頂點(diǎn)C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項(xiàng)正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項(xiàng)正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點(diǎn)到角的兩邊距離相等),∴點(diǎn)E到AB的距離等于CE的長(zhǎng),故③選項(xiàng)正確,故正確的有3個(gè).故選D.【點(diǎn)睛】此題主要考查了翻折變換的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的性質(zhì)等知識(shí),利用折疊前后對(duì)應(yīng)角相等是解題關(guān)鍵.4、C【解析】
結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個(gè)扇形,底面展開是一個(gè)圓.【詳解】解:圓錐的展開圖是由一個(gè)扇形和一個(gè)圓形組成的圖形.故選C.【點(diǎn)睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個(gè)扇形和一個(gè)圓組成.5、B【解析】
由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長(zhǎng).【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).6、C【解析】
根據(jù)已知的條件,可由AAS判定△AEB≌△AFC,進(jìn)而可根據(jù)全等三角形得出的結(jié)論來判斷各選項(xiàng)是否正確.【詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結(jié)論有:①③④;故選C.【點(diǎn)睛】此題主要考查的是全等三角形的判定和性質(zhì),做題時(shí)要從最容易,最簡(jiǎn)單的開始,由易到難.7、D【解析】解:當(dāng)點(diǎn)Q在AC上時(shí),∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當(dāng)點(diǎn)Q在BC上時(shí),如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點(diǎn)睛:本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在BC上這種情況.8、B【解析】
先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【點(diǎn)睛】本題考查了簡(jiǎn)單事件的概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率為,故選B.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.10、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1:4【解析】∵兩個(gè)相似三角形對(duì)應(yīng)邊上的高的比為1∶4,∴這兩個(gè)相似三角形的相似比是1:4∵相似三角形的周長(zhǎng)比等于相似比,∴它們的周長(zhǎng)比1:4,故答案為:1:4.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),相似三角形對(duì)應(yīng)邊上的高、相似三角形的周長(zhǎng)比都等于相似比.12、【解析】如圖,連接EF,∵點(diǎn)E、點(diǎn)F是AD、DC的中點(diǎn),∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點(diǎn)睛:本題考查了翻折變換的知識(shí),解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長(zhǎng),再利用勾股定理解答即可.13、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取??;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個(gè)整數(shù)解,根據(jù)解集取出四個(gè)整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項(xiàng)合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個(gè)整數(shù)解,即為1,0,?1,?2,可得出實(shí)數(shù)a的范圍為故答案為點(diǎn)睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個(gè)整數(shù)解覺得實(shí)數(shù)的取值范圍.14、5π【解析】
根據(jù)題意得出球在無滑動(dòng)旋轉(zhuǎn)中通過的路程為圓弧,根據(jù)弧長(zhǎng)公式求出弧長(zhǎng)即可.【詳解】解:由圖形可知,圓心先向前走OO1的長(zhǎng)度,從O到O1的運(yùn)動(dòng)軌跡是一條直線,長(zhǎng)度為圓的周長(zhǎng),然后沿著弧O1O2旋轉(zhuǎn)圓的周長(zhǎng),則圓心O運(yùn)動(dòng)路徑的長(zhǎng)度為:×2π×5=5π,故答案為5π.【點(diǎn)睛】本題考查的是弧長(zhǎng)的計(jì)算和旋轉(zhuǎn)的知識(shí),解題關(guān)鍵是確定半圓作無滑動(dòng)翻轉(zhuǎn)所經(jīng)過的路線并求出長(zhǎng)度.15、【解析】
先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【點(diǎn)睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.16、(2,2)【解析】如圖,過點(diǎn)Q作QD⊥OA于點(diǎn)D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長(zhǎng)為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點(diǎn)Q的坐標(biāo)為(217、(3,1)【解析】分析:已知拋物線解析式為頂點(diǎn)式,可直接寫出頂點(diǎn)坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,拋物線的頂點(diǎn)坐標(biāo)為(3,1).故答案為(3,1).點(diǎn)睛:主要考查了拋物線頂點(diǎn)式的運(yùn)用.三、解答題(共7小題,滿分69分)18、(3)a=,方程的另一根為;(2)答案見解析.【解析】
(3)把x=2代入方程,求出a的值,再把a(bǔ)代入原方程,進(jìn)一步解方程即可;(2)分兩種情況探討:①當(dāng)a=3時(shí),為一元一次方程;②當(dāng)a≠3時(shí),利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當(dāng)a=3時(shí),方程為2x=3,解得:x=3.②當(dāng)a≠3時(shí),由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當(dāng)a=2時(shí),原方程為:x2+2x+3=3,解得:x3=x2=-3;當(dāng)a=3時(shí),原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當(dāng)a=3,3,2時(shí),方程僅有一個(gè)根,分別為3,3,-3.考點(diǎn):3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應(yīng)用.19、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】
(1)根據(jù)“一般”和“不知道”的頻數(shù)和頻率求總數(shù)即可(2)根據(jù)(1)的總數(shù),結(jié)合頻數(shù),頻率的大小可得到結(jié)果(3)根據(jù)“非常喜歡”學(xué)生的比值就可以計(jì)算出2000名學(xué)生中的人數(shù).【詳解】解:(1)“一般”頻數(shù)30,“不知道”頻數(shù)10,兩者頻率0.20,根據(jù)頻數(shù)的計(jì)算公式可得,總數(shù)=頻數(shù)/頻率=(名);(2)“非常喜歡”頻數(shù)90,a=;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)頻數(shù)和頻率的應(yīng)用,掌握頻率的計(jì)算公式是解題的關(guān)鍵.20、(1)150、45、36;(2)28.8°;(3)450人【解析】
(1)由B項(xiàng)目的人數(shù)及其百分比求得總?cè)藬?shù),根據(jù)各項(xiàng)目人數(shù)之和等于總?cè)藬?shù)求得m=45,再用D項(xiàng)目人數(shù)除以總?cè)藬?shù)可得n的值;
(2)360°乘以A項(xiàng)目人數(shù)占總?cè)藬?shù)的比例可得;
(3)利用總?cè)藬?shù)乘以樣本中C人數(shù)所占比例可得.【詳解】解:(1)接受問卷調(diào)查的共有30÷20%=150人,m=150-(12+30+54+9)=45,∴n=36,
故答案為:150、45、36;(2)A類所對(duì)應(yīng)的扇形圓心角的度數(shù)為故答案為:28.8°;(3)(人)答:估計(jì)該社區(qū)參加碧沙崗“暴走團(tuán)”的大約有450人【點(diǎn)睛】本題考查的是統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.21、證明見解析.【解析】
根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出,從而證出結(jié)論.【詳解】證明:,,即,在和中,,,.【點(diǎn)睛】此題考查的是全等三角形的判定及性質(zhì),掌握利用SAS判定兩個(gè)三角形全等和全等三角形的對(duì)應(yīng)邊相等是解決此題的關(guān)鍵.22、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識(shí)分“一般”的人數(shù)除以安全意識(shí)分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學(xué)生人數(shù);用安全意識(shí)分“很強(qiáng)”的人數(shù)除以這次調(diào)查一共抽取的學(xué)生人數(shù)即可得安全意識(shí)“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學(xué)生人數(shù)乘以安全意識(shí)分“較強(qiáng)”的人數(shù)所占的百分比即可得安全意識(shí)分“較強(qiáng)”的人數(shù),在條形統(tǒng)計(jì)圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識(shí)為“淡薄”、“一般”的學(xué)生一共所占的百分比即可得全校需要強(qiáng)化安全教育的學(xué)生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補(bǔ)全統(tǒng)計(jì)圖如下:(3)1800×=1人.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;用樣本估計(jì)總體.23、(1);(2)的長(zhǎng)為;(1)存在,畫出點(diǎn)P的位置如圖1見解析,的最小值為
.【解析】
(1)根據(jù)勾股定理解答即可;(2)設(shè)AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長(zhǎng)CB到點(diǎn)G,使BG=BC,連接FG,交BE于點(diǎn)P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設(shè)AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長(zhǎng)為;(1)存在,如圖1,延長(zhǎng)CB到點(diǎn)G,使BG=BC,連接FG,交BE于點(diǎn)P,連接PC,則點(diǎn)P即為所求,此時(shí)有:PC=PG,∴PF+PC=GF.過點(diǎn)F作FH⊥BC,交BC于點(diǎn)H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點(diǎn)睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 氣切病人防止感染的護(hù)理
- 2025年中圖版必修3地理下冊(cè)階段測(cè)試試卷
- 2025年度出租車副班司機(jī)車輛安全檢查與雇傭合同3篇
- 2025年度保密信息保密技術(shù)檢測(cè)與評(píng)估合同3篇
- 二零二五年度高層建筑挖機(jī)施工安全監(jiān)管協(xié)議3篇
- 二零二五年活動(dòng)板房租賃與節(jié)能減排合同3篇
- 2024版離婚后子女撫養(yǎng)權(quán)益變更協(xié)議版B版
- 政策方案設(shè)計(jì)
- 《幽門螺桿菌感染》
- 湖南大學(xué)環(huán)境科學(xué)與工程學(xué)院碩士生-20211206085956
- 貴州省貴陽市2021-2022學(xué)年蘇教版四年級(jí)上冊(cè)期末數(shù)學(xué)試卷(含答案)
- 新教材高中歷史選擇性必修一全冊(cè)知識(shí)點(diǎn)總結(jié)
- 2017英語專業(yè)八級(jí)改錯(cuò)真題及答案持續(xù)更新部分詳解文字答案校對(duì)版
- 室內(nèi)蒸汽供熱系統(tǒng)
- 小型塑料注射成型機(jī)液壓系統(tǒng)設(shè)計(jì)
- 《干部廉政檔案》2022年最新模板
- 高支模方案(專家論證定稿)
- 城投集團(tuán)年度安全管理工作計(jì)劃
- 美術(shù)課教案《線造型》
- 人民網(wǎng)刪除稿件帖文申請(qǐng)登記表
- 面審技巧及必備基本話術(shù)
評(píng)論
0/150
提交評(píng)論