高中數(shù)學新課程創(chuàng)新教學設(shè)計案例篇同角三角函數(shù)的基本關(guān)系式_第1頁
高中數(shù)學新課程創(chuàng)新教學設(shè)計案例篇同角三角函數(shù)的基本關(guān)系式_第2頁
高中數(shù)學新課程創(chuàng)新教學設(shè)計案例篇同角三角函數(shù)的基本關(guān)系式_第3頁
高中數(shù)學新課程創(chuàng)新教學設(shè)計案例篇同角三角函數(shù)的基本關(guān)系式_第4頁
高中數(shù)學新課程創(chuàng)新教學設(shè)計案例篇同角三角函數(shù)的基本關(guān)系式_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

33同角三角函數(shù)的基本關(guān)系式教材分析這節(jié)課主要是根據(jù)三角函數(shù)的定義,導出同角三角函數(shù)的兩個基本關(guān)系式sin2a+cos2a=1與,并初步進行這些公式的兩類基本應(yīng)用.教學重點是公式sin2a+cos2a=1與的推導及以下兩類基本應(yīng)用:(1)已知某角的正弦、余弦、正切中的一個,求其余兩個三角函數(shù).(2)化簡三角函數(shù)式及證明簡單的三角恒等式.其中,已知某角的一個三角函數(shù)值,求它的其余各三角函數(shù)值時,正負號的選擇是本節(jié)的一個難點,正確運用平方根及象限角的概念是突破這一難點的關(guān)鍵;證明恒等式是這節(jié)課的另一個難點.課堂上教師應(yīng)放手讓學生獨立解決問題,優(yōu)化自己的解題過程.教學目標1.讓學生經(jīng)歷同角三角函數(shù)的基本關(guān)系的探索、發(fā)現(xiàn)過程,培養(yǎng)學生的動手實踐、探索、研究能力.2.理解和掌握同角三角函數(shù)的基本關(guān)系式,并能初步運用它們解決一些三角函數(shù)的求值、化簡、證明等問題,培養(yǎng)學生的運算能力,邏輯推理能力.3.通過同角三角函數(shù)基本關(guān)系的學習,揭示事物之間的普遍聯(lián)系規(guī)律,培養(yǎng)學生的辯證唯物主義世界觀.任務(wù)分析這節(jié)課的主要任務(wù)是引導學生根據(jù)三角函數(shù)的定義探索出同角三角函數(shù)的兩個基本關(guān)系式:sin2a+cos2a=1及,并進行初步的應(yīng)用.由于該節(jié)內(nèi)容比較容易,所以,課堂上無論是關(guān)系式的探索還是例、習題的解決都可以放手讓學生獨立完成,即由學生自己把要學的知識探索出來,并用以解決新的問題.必要時,教師可以在以下幾點上加以強調(diào):(1)“同角”二字的含義.(2)關(guān)系式的適用條件.(3)化簡題最后結(jié)果的形式.(4)怎樣優(yōu)化解題過程.教學設(shè)計一、問題情境教師出示問題:上一節(jié)內(nèi)容,我們學習了任意角α的六個三角函數(shù)及正弦線、余弦線和正切線,你知道它們之間有什么聯(lián)系嗎?你能得出它們之間的直接關(guān)系嗎?二、建立模型1.引導學生寫出任意角α的六個三角函數(shù),并探索它們之間的關(guān)系在角α的終邊上任取一點P(x,y),它與原點的距離是r(r>0),則角α的六個三角函數(shù)值是足2.推導紀同角三角函鮮數(shù)關(guān)系式導引導學生通曲過觀察、分場析和討論,壇消元(消去務(wù)x,y,r?。?,從而獲壤取下述基本喘關(guān)系.朝(1)平方當關(guān)系:si軋n僚2付a倘+cos盒2恰a傍=1.本(2)商數(shù)尸關(guān)系:t:培說明:箭①聞當放手讓學列生推導同角護三角函數(shù)的奸基本關(guān)系時飼,部分學生知可能會利用裁三角函數(shù)線起,借助勾股次定理及相似卡三角形的知動識來得出結(jié)號論.對于這授種推導方法者,教師也應(yīng)劑給以充分肯棍定,并進一稍步引導學生涌得出|si謊nα|+|下cosα|恰≥1.殲②鍵除以上兩個法關(guān)系式外,歉也許部分學協(xié)生還會得出肅如下關(guān)系式寒:昂.語教師點撥:厘這些關(guān)系式戚都很對,但加最基本的還歪是(1)和賠(2),故篩為了減少大責家的記憶負菊擔,只須記述?。?)和乏(2)即可吳.以上關(guān)系袖式均為同角蓬三角函數(shù)的尿基本關(guān)系式及.縮教師啟發(fā):捷(1)對“繞同角”二字規(guī),大家是怎倉樣理解的?攏(2)這兩熱個基本關(guān)系誘式中的角α跟有沒有范圍怠限制?障(3)自然逃界的萬物都斗有著千絲萬押縷的聯(lián)系,炮大家只要養(yǎng)謹成善于觀察押的習慣,也欺許每天都會議有新的發(fā)現(xiàn)裙.剛才我們喘發(fā)現(xiàn)了同角蔑三角函數(shù)的要基本關(guān)系式海,那么這些脅關(guān)系式能用堡于解決哪些底問題呢?悠三、解釋應(yīng)抵用[例題]倡1.已知田sinα=路,且α是第迫二象限角,悅求角α的余捆弦值和正切信值.鍛2.已知付tanα=驢-隸,且α是第蕩二象限角,啟求角α的正好弦和余弦值屢.控說明:這兩辱個題是關(guān)系肝式的基本應(yīng)寬用,應(yīng)讓學傻生獨立完成賢.可選兩名窄同學到黑板阿前板書,以親便規(guī)范解題遞步驟.浙變式1在型例2中若去愛掉“且α是堅第二象限角逼”,該題的光解答過程又把將如何?卡師生一起完闊成該題的解姨答過程.獄解:由題意挎和基本關(guān)系族式,列方程漸組,得墾由晌②本,得sin竄α=-起cosα,額代入園①歡整理,得6測cos諒2罷α=1,c筋os巾2賢α=流.湖∵演tanα酒=-黃<0,甘∴際角α是第二富或第四象限糞角.碌當α是第二喉象限角時,塘cosα=捆-罷,境代入衣②亡式,得哪;貿(mào)當α是第四儀象限角時,悲cosα=申,端代入偏②巴式,得集.悼小結(jié):由平調(diào)方關(guān)系求值赴時,要涉及束開方運算,籍自然存在符桃號的選取問泄題.由于本更題沒有具體叢指明α是第鹽幾象限角,閉因此,應(yīng)針撥對α可能所扮處的象限,茄分類討論.貍變式2把幕例2變?yōu)椋翰艘阎猼an區(qū)α=-耍,求乞的值.弦解法1:由喘tanα=閥-罰及基本關(guān)系摸式可解得相針對兩種情朱況下的結(jié)果波居然一致的荒情況,教師敢及時點撥:遞觀察所求式造子的特點,紹看能不能不暢通過求si存nα,co晉sα的值而棋直接得出該廣分式的值.蟻學生得到如止下解法:府由此,引出健變式3.敲已知:ta茂nα=-呆,求(si望nα-co葛sα)賤2閑的值.車有了上一題虎的經(jīng)驗,學律生會得到如欄下解法:孟教師歸納、飽啟發(fā):這個派方法成功地蓄避免了開方榮運算,因而藏也就避開了亞不必要的討崗論.遺憾的脾是,因為它站不是分式形答式,所以解隨題過程不像送“變式2”夢那樣簡捷.嫂那么,能解號決這一矛盾友嗎?易學生得到如豐下解法:思教師引導學扣生反思、總狠結(jié):(1)培由于開方運云算一般存在午符號選取問羽題,因此,柄在求值過程節(jié)中,若能避既免開方的應(yīng)駛盡量避免.踐(2)當式憤子為分式且孝分子、分母解都為三角函兄數(shù)的n(n蓋∈胞N鳳且n≥1)孩次冪的齊次慘式時,采用家上述方法可醉優(yōu)化解題過營程.[練習]遣當學生完成抱了以上題目俘后,教師引喬導學生討論光如下問題:墨(1)化簡咽題的結(jié)果一愿定是“最簡團”形式,對項三角函數(shù)的逃“最簡”形漆式,你是怎唱樣理解的?奔(2)關(guān)于疤三角函數(shù)恒際等式的證明可,一般都有鬼哪些方法?燙你是否發(fā)現(xiàn)拳了一些技巧般?各四、拓展延綁伸掠教師出示問稠題,啟發(fā)學哈生一題多解純,并激發(fā)學虛生的探索熱垃情.渾已知sin兇α-cos驢α=-狂,180°銅<α<27找0°,求t面anα的值旗.顛解法1:由并sinα-喉cosα=銳-襲,得艇反思:(1桂)解法1的號結(jié)果比解法想2的結(jié)果多陜了一個,看套來產(chǎn)生了“肚增根”,那粘么,是什么鎖原因產(chǎn)生了告增根呢?探(2)當學提生發(fā)現(xiàn)了由啄sinα-捷cosα=盾-御得到sin六2芽α-2si振nαcos臭α+cos色2燃α=桃的過程中,榮α的范圍變規(guī)大了時,教蔑師再點撥:寺怎樣才能使眠平方變形是紐等價的呢?俘由學生得出位如下正確答喘案:業(yè)∵呢180°未<α<27臉0°,且s傍inα-c夜osα=-診<0,旁∴腎sinα喚<0,co開sα<0,心且|sin籠α|>|c組osα|,橋因此|ta牧nα|>1陳,只能取t供anα=2板.則強調(diào):非等再價變形是解撿法1出錯的還關(guān)鍵!點評投這篇案例力馳求體現(xiàn)新課鍛程理念下的云以人為本的盒思想,充分婚發(fā)揮了學生派的主體作用格.教師充當雷著學生學習版的引導者、瀉支持者和幫毛助者的角色豈.教師和學折生是本課的屯共同參與者眾,共同努力搏

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論