![埃森哲:生成式人工智能:人人可享的新時代報告-23正式版_第1頁](http://file4.renrendoc.com/view/29eddd9cd3c79be9599a82ca17ef4230/29eddd9cd3c79be9599a82ca17ef42301.gif)
![埃森哲:生成式人工智能:人人可享的新時代報告-23正式版_第2頁](http://file4.renrendoc.com/view/29eddd9cd3c79be9599a82ca17ef4230/29eddd9cd3c79be9599a82ca17ef42302.gif)
![埃森哲:生成式人工智能:人人可享的新時代報告-23正式版_第3頁](http://file4.renrendoc.com/view/29eddd9cd3c79be9599a82ca17ef4230/29eddd9cd3c79be9599a82ca17ef42303.gif)
![埃森哲:生成式人工智能:人人可享的新時代報告-23正式版_第4頁](http://file4.renrendoc.com/view/29eddd9cd3c79be9599a82ca17ef4230/29eddd9cd3c79be9599a82ca17ef42304.gif)
![埃森哲:生成式人工智能:人人可享的新時代報告-23正式版_第5頁](http://file4.renrendoc.com/view/29eddd9cd3c79be9599a82ca17ef4230/29eddd9cd3c79be9599a82ca17ef42305.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AneweraofgenerativeAIforeveryoneThetechnologyunderpinningChatGPTwilltransformworkandreinventbusiness每日免費獲取報告1、每日微信群內(nèi)分享7+最新重磅報告;2、每日分享當日華爾街日報、金融時報;3、每周分享經(jīng)濟學人4、行研報告均為公開版,權利歸原作者所有,起點財經(jīng)僅分發(fā)做內(nèi)部學習。掃一掃二維碼關注公號回復:研究報告加入“起點財經(jīng)”微信群。。TableofContents0304050812WelcometoAI’snewin?ectionpointHowdidwegethere?|MilestonesinthejourneytogenerativeAIConsumeorcustomize:GenerativeAIforeveryoneAlookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessEmbracethegenerativeAIera:SixadoptionessentialsThefutureofAIisaccelerating1921GlossaryandReferences22AuthorsAneweraofgenerativeAIforeveryone|2IntroductionWelcometoAI’snewin?ectionpointChatGPThaswokenuptheworldtothetransformativepotentialofarti?cialintelligence(AI),capturingglobalattentionandsparkingawaveofcreativityrarelyseenbefore.Itsabilitytomimichumandialogueanddecision-makinghasgivenusAI’s?rsttruein?ectionpointinpublicadoption.Finally,everyone,everywherecanseethetechnology’struedisruptivepotentialforthemselves.Afoundationmodelisagenerictermforlargemodelswithbillionsofparameters.Withrecentadvances,companiescannowbuildspecializedimage-andlanguage-generatingmodelsontopofthesefoundationmodels.Largelanguagemodels(LLMs)arebothatypeofgenerativeAIandatypeoffoundationmodel.Businessleadersrecognizethesigni?canceofthismoment.TheycanseehowLLMsandgenerativeAIwillfundamentallytransformeverythingfrombusiness,toscience,tosocietyitself—unlockingnewperformancefrontiers.Thepositiveimpactonhumancreativityandproductivitywillbemassive.Considerthat,acrossallindustries,Accenturefound40%ofallworkinghourscanbeimpactedbyLLMslikeGPT-4.Thisisbecauselanguagetasksaccountfor62%ofthetotaltimeemployeeswork,and65%ofthattimecanbetransformedintomoreproductiveactivitythroughaugmentationandautomation(seeFigure3).TheLLMsbehindChatGPTmarkasigni?cantturningpointandmilestoneinarti?cialintelligence.TwothingsmakeLLMsgamechanging.First,they’vecrackedthecodeonlanguagecomplexity.Now,forthe?rsttime,machinescanlearnlanguage,contextandintentandbeindependentlygenerativeandcreative.Second,afterbeingpre-trainedonvastquantitiesofdata(text,imagesoraudio),thesemodelscanbeadaptedor?ne-tunedforawiderangeoftasks.Thisallowsthemtobereusedorrepurposedinmanydifferentways.ChatGPTreached100millionmonthlyactiveusersjusttwomonthsafterlaunch,makingitthefastest-growingconsumerapplicationinhistory.1AneweraofgenerativeAIforeveryone|3Howdidwegethere?Machinelearning:AnalysisandpredictionphaseThe?rstdecadeofthe2000smarkedtherapidadvanceofvariousmachinelearningtechniquesthatcouldanalyzemassiveamountsofonlinedatatodrawconclusions–or“l(fā)earn”–fromtheresults.Sincethen,companieshaveviewedmachinelearningasanincrediblypowerful?eldofAIforanalyzingdata,?ndingpatterns,generatinginsights,makingpredictionsandautomatingtasksatapaceandonascalethatwaspreviouslyimpossible.MilestonesinthejourneytogenerativeAIDeeplearning:VisionandspeechphaseThe2010sproducedadvancesinAI’sthatsearchenginesandself-drivingcarsusetoclassifyanddetectobjects,aswellasthevoicerecognitionthatallowspopularAIspeechassistantstorespondtousersinanaturalway.perceptioncapabilitiesinthe?eldofmachinelearningcalleddeeplearning.BreakthroughsindeeplearningenablethecomputervisionGenerativeAI:Enterthelanguage-masteryphaseBuildingonexponentialincreasesinthesizeandcapabilitiesofdeeplearningmodels,the2020swillbeaboutlanguagemastery.TheGPT-4languagemodel,developedbyOpenAI,marksthebeginningofanewphaseintheabilitiesoflanguage-basedAIapplications.Modelssuchasthiswillhavefar-reachingconsequencesforbusiness,sincelanguagepermeateseverythinganorganizationdoesdaytoday—itsinstitutionalknowledge,communicationandprocesses.2AneweraofgenerativeAIforeveryone|4Consumeorcustomize:GenerativeAIforeveryoneAneweraofgenerativeAIforeveryone|5Consumeorcustomize:GenerativeAIforeveryoneConsumeorcustomize:GenerativeAIforeveryoneEasy-to-consumegenerativeAIapplicationslikeChatGPT,DALL-E,StableDiffusionandothersarerapidlydemocratizingthetechnologyinbusinessandsociety.Theeffectonorganizationswillbeprofound.TheabilityofLLMstoprocessmassivedatasetsallowsthemtopotentially“know”We’reataphaseintheadoptioncyclewhenmostorganizationsarestartingtoexperimentbyconsumingfoundationmodels“offtheshelf.”However,thebiggestvalueformanywillcomewhentheycustomizeor?netunemodelsusingtheirowndatatoaddresstheiruniqueneeds:everythinganorganizationhaseverknown—theentirehistory,context,nuanceandintentofabusiness,anditsproducts,marketsandcustomers.Anythingconveyedthroughlanguage(applications,systems,documents,emails,chats,videoandaudiorecordings)canbeharnessedtodrivenext-levelinnovation,optimizationandreinvention.ConsumeGenerativeAIandLLMapplicationsarereadytoconsumeandeasytoaccess.CompaniescanconsumethemthroughAPIsandtailorthem,toasmalldegree,fortheirownusecasesthroughpromptengineeringtechniquessuchasprompttuningandpre?xlearning.Customize97%ofglobalexecutivesagreeAIfoundationmodelswillenableconnectionsacrossdatatypes,revolutionizingwhereButmostcompanieswillneedtocustomizemodels,by?ne-tuningthemwiththeirowndata,tomakethemwidelyusableandvaluable.Thiswillallowthemodelstosupportspeci?cdownstreamtasksallthewayacrossthebusiness.Theeffectwillbetoincreaseacompany’sef?cacyinusingAItounlocknewperformancefrontiers—elevatingemployeecapabilities,delightingcustomers,introducingnewbusinessmodelsandboostingresponsivenesstosignalsofchange.andhowAIisused.3AneweraofgenerativeAIforeveryone|6Consumeorcustomize:GenerativeAIforeveryoneCompanieswillusethesemodelstoreinventtheCreating.GenerativeAIwillbecomeanessentialcreativepartnerforpeople,revealingnewwaystoreachandappealtoaudiencesandbringingunprecedentedspeedandinnovationinareaslikeproductiondesign,designresearch,visualidentity,naming,copygenerationandtesting,andreal-timepersonalization.Companiesareturningtostate-of-the-artarti?cialintelligencesystemslikeDALL·E,MidjourneyandStableDiffusionfortheirsocialmediavisualcontentgenerationoutreach.DALL·E,forexample,createsrealisticimagesandartbasedontextdescriptionsandcanprocessupto12billionparameterswhentransformingwordsintopictures.ImagescreatedcanthenbesharedAutomating.GenerativeAI’ssophisticatedunderstandingofhistoricalcontext,nextbestactions,summarizationcapabilities,andpredictiveintelligencewillcatalyzeaneweraofhyper-ef?ciencyandhyper-personalizationinboththebackandfrontof?ce—takingbusinessprocessautomationtoatransformativenewlevel.OnemultinationalbankisusinggenerativeAIandLLMstotransformhowitmanagesvolumesofpost-tradeprocessingemails—automaticallydraftingmessageswithrecommendedactionsandroutingthemtotherecipient.Theresultislessmanualeffortandsmootherinteractionswithcustomers.wayworkisdone.Everyroleineveryenterprisehasthepotentialtobereinvented,ashumansworkingwithAIco-pilotsbecomesthenorm,dramaticallyamplifyingwhatpeoplecanachieve.Inanygivenjob,sometaskswillbeautomated,somewillbeassisted,andsomewillbeunaffectedbythetechnology.Therewillalsobealargenumberofnewtasksforhumanstoperform,suchasensuringtheaccurateandresponsibleuseofnewAI-poweredsystems.Considertheimpactinthesekeyfunctions:Advising.AImodelswillbecomeanever-presentco-pilotforeveryworker,boostingproductivitybyputtingnewkindsofhyper-personalizedintelligenceintohumanhands.Examplesincludecustomersupport,salesenablement,humanresources,medicalandscienti?cresearch,corporatestrategyandcompetitiveintelligence.Largelanguagemodelscouldbeusefulintacklingtheroughly70%ofcustomerservicecommunicationthatisnotstraightforwardandcanbene?tfromaconversational,powerfulandintelligentbot,understandingacustomer’sintent,formulateanswersonitsownandimprovetheonInstagramandTwitter.5Protecting.Intime,generativeAIwillsupportCoding.SoftwarecoderswillusegenerativeAItoenterprisegovernanceandinformationsecurity,protectingagainstfraud,improvingregulatorycompliance,andproactivelyidentifyingsigni?cantlyboostproductivity—rapidlyconvertingoneprogramminglanguagetoanother,masteringprogrammingtoolsandmethods,automatingcodewriting,predictingandpre-emptingproblems,andmanagingsystemdocumentation.AccentureispilotingtheuseofOpenAILLMstoenhancedeveloperproductivitybyautomaticallygeneratingdocumentation–forexample,SAPcon?gurationrationaleandfunctionalortechnicalspecs.ThesolutionenablesuserstosubmitrequeststhroughaMicrosoftTeamschatastheywork.Correctlypackageddocumentsarethenreturnedatspeed—agreatexampleofhowspeci?ctasks,ratherthanentirejobs,willbeaugmentedandautomated.riskbydrawingcross-domainconnectionsandinferencesbothwithinandoutsidetheorganization.Instrategiccyberdefense,LLMscouldofferusefulcapabilities,suchasexplainingmalwareandquicklyclassifyingwebsites.6Intheshortterm,however,organizationscanexpectcriminalstocapitalizeongenerativeAI’scapabilitiestogeneratemaliciouscodeorwriteaccuracyandqualityofanswers.4theperfectphishingemail.7AneweraofgenerativeAIforeveryone|7Alookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessAneweraofgenerativeAIforeveryone|8Alookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessAlookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessMomentslikethisdon’tcomearoundoften.ThecomingyearswillseeoutsizedinvestmentingenerativeAI,LLMsandfoundationmodels.What’suniqueaboutthisevolutionisthatthetechnology,regulation,andbusinessadoptionareallacceleratingexponentiallyatthesametime.Inpreviousinnovationcurves,thetechnologytypicallyoutpacedbothadoptionandregulation.Figure1:EachlayerofthegenerativeAItechstackwillrapidlyevolveApplications:GenerativeAIandLLMswillbeincreasinglyaccessibletousersinthecloudviaAPIsandbybeingembeddeddirectlyintootherapplications.Companieswillconsumethemastheyareorwillcustomizeand?ne-tunethemwithproprietarydata.ThetechnologystackFine-tuning:Theimportanceofmodel?ne-tuningwillcreatedemandforamultidisciplinarysetofskillsspanningsoftwareengineering,psychology,linguistics,arthistory,literatureandlibraryscience.ThecomplextechnologyunderpinninggenerativeAIisexpectedtoevolverapidlyateachlayer.Thishasbroadbusinessimplications.ConsiderthattheamountofcomputeneededtotrainthelargestAImodelshasgrownexponentially–nowdoublingbetweenevery3.4to10months,accordingtoFoundationmodels:Themarketwillrapidlymatureanddiversifyasmorepre-trainedmodelsemerge.Newmodeldesignswilloffermorechoicesforbalancingsize,transparency,versatilityandperformance.variousreports.8CostandcarbonemissionsData:Improvingthematurityoftheenterprisedatalifecyclewillbecomeaprerequisiteforsuccess–requiringmasteryofnewdata,newdatatypesandimmensevolumes.GenerativeAIfeatureswithinmoderndataplatformswillemerge,enhancingadoptionatscale.arethereforecentralconsiderationsinadoptingenergy-intensivegenerativeAI.“Thehottestnewprogrammingplatformisthenapkin.”PaulDaugherty,AccentureGroupChiefExecutive&ChiefTechnologyOf?cerInfrastructure:CloudinfrastructurewillbeessentialfordeployinggenerativeAIwhilemanagingcostsandcarbonemissions.Datacenterswillneedretro?tting.Newchipsetarchitectures,hardwareinnovations,andef?cientalgorithmswillalsoplayacriticalrole.ReferringtotheuseofOpenAItogenerateaworkingwebsitefromanapkindrawingAneweraofgenerativeAIforeveryone|9Alookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessTheriskandregulatoryenvironmentAIsystemsneedtobe“raised”withadiverseandinclusivesetofinputssothattheyre?ectthebroaderbusinessandsocietalnormsofresponsibility,fairnessandtransparency.WhenAIisdesignedandputintopracticewithinanethicalframework,itacceleratesthepotentialforresponsiblecollaborativeintelligence,wherehumaningenuityconvergeswithintelligenttechnology.Figure2:KeyriskandregulatoryquestionsforgenerativeAICompanieswillhavethousandsofwaystoapplygenerativeAIandfoundationmodelstomaximizeef?ciencyanddrivecompetitiveadvantage.Understandably,they’llwanttogetstartedassoonaspossible.Butanenterprise-widestrategyneedstoaccountforallthevariantsofAIandassociatedtechnologiestheyintendtouse,notonlygenerativeAIandlargelanguagemodels.Intellectualproperty:HowwillthebusinessprotectitsownIP?Andhowwillitpreventtheinadvertentbreachofthird-partycopyrightinusingpre-trainedfoundationmodels?Dataprivacyandsecurity:HowwillupcominglawsliketheEUAIActbeincorporatedinthewaydataishandled,processed,protected,securedandused?Thiscreatesafoundationfortrustwithconsumers,theworkforce,andsociety,andcanboostbusinessperformanceandunlocknewsourcesofgrowth.ChatGPTraisesimportantquestionsabouttheresponsibleuseofAI.Thespeedoftechnologyevolutionandadoptionrequirescompaniestopaycloseattentiontoanylegal,ethicalandreputationalriskstheymaybeincurring.Discrimination:Isthecompanyusingorcreatingtoolsthatneedtofactorinanti-discriminationoranti-biasconsiderations?Productliability:WhathealthandsafetymechanismsneedtobeputinplacebeforeagenerativeAI-basedproductistakentomarket?It’scriticalthatgenerativeAItechnologies,includingChatGPT,areresponsibleandcompliantbydesign,andthatmodelsandapplicationsdonotcreateunacceptableriskforthebusiness.AccenturewasapioneerintheresponsibleuseoftechnologyincludingtheresponsibleuseofAIinitsCodeofBusinessEthicsfrom2017.ResponsibleAIisthepracticeofdesigning,buildinganddeployingAIinaccordancewithclearprinciplestoempowerbusinesses,respectpeople,andbene?tsociety—allowingcompaniestoengendertrustinAIandtoscaleAIwithcon?dence.Trust:Whatleveloftransparencyshouldbeprovidedtoconsumersandemployees?HowcanthebusinessensuretheaccuracyofgenerativeAIoutputsandmaintainusercon?dence?Identity:Whenestablishingproof-of-personhooddependsonvoiceorfacialrecognition,howwillveri?cationmethodsbeenhancedandimproved?Whatwillbetheconsequencesofitsmisuse?AneweraofgenerativeAIforeveryone|10Alookaheadatthefast-pacedevolutionoftechnology,regulationandbusinessThescaleofadoptioninbusinessFigure3:GenerativeAIwilltransformworkacrossindustriesCompaniesmustreinventworkto?ndapathtogenerativeAIvalue.Businessleadersmustleadthechange,startingnow,injobredesign,taskredesignandreskillingpeople.Ultimately,everyroleinanenterprisehasthepotentialtobereinvented,oncetoday’sjobsaredecomposedintotasksthatcanbeautomatedorassistedandreimaginedforanewfutureofhuman+machinework.BankingInsurance54%48%36%40%43%33%34%31%12%24%26%10%12%15%18%WorktimedistributionbyindustryandpotentialAIimpactBasedontheiremploymentlevelsintheUSin202114%Software&PlatformsCapitalmarketsEnergy21%28%29%14%Lowerpotentialfor14%9%HigherpotentialforautomationHigherpotentialforaugmentationaugmentationorautomationNon-languagetasks34%33%Communications&MediaRetail13%7%21%12%22%46%GenerativeAIwilldisruptworkasweknowittoday,introducinganewdimensionofhumanandAIcollaborationinwhichmostworkerswillhavea“co-pilot,”radicallychanginghowworkisdoneandwhatworkisdone.Nearlyeveryjobwillbeimpacted–somewillbeeliminated,mostwillbetransformed,andmanynewjobswillbecreated.Organizationsthattakestepsnowtodecomposejobsintotasks,andinvestintrainingpeopletoworkdifferently,alongsidemachines,willde?nenewperformancefrontiersandhaveabigleguponlessimaginativecompetitors.40%ofworkinghoursacrossindustriescanbeimpactedbyLargeLanguageModels(LLMs)IndustryAverageHealth9%11%9%38%28%30%26%30%26%28%27%25%26%24%24%20%33%35%20%27%26%PublicServiceAerospace&DefenseAutomotive13%41%Whyisthisthecase?Languagetasksaccountfor62%oftotalworkedtimeintheUS.Oftheoverallshareoflanguagetasks,65%havehighpotentialtobeautomatedoraugmentedbyLLMs.6%13%50%HighTech8%16%15%50%50%Travel6%6%8%6%Utilities15%17%14%52%50%54%57%56%Source:AccentureResearchbasedonanalysisofOccupationalInformationNetwork(O*NET),USDept.ofLabor;USBureauofLaborStatistics.LifeSciencesIndustrialNotes:Wemanuallyidenti?ed200tasksrelatedtolanguage(outNearly6in10organizationsplantouseChatGPTforlearningpurposesandoverhalfareplanningpilotcasesin2023.Over4in10wanttomakeaConsumerGoods&ServicesChemicals6%13%5%14%of332includedinBLS),whichwerelinkedtoindustriesusingtheirshareineachoccupationandtheoccupations’employmentlevelineachindustry.TaskswithhigherpotentialforautomationcanbetransformedbyLLMswithreducedinvolvementfromahumanworker.TaskswithhigherpotentialforaugmentationarethoseinwhichLLMswouldneedmoreinvolvementfromhumanworkers.NaturalResources5%11%64%largeinvestment.90%10%20%30%40%50%60%70%80%90%100%AneweraofgenerativeAIforeveryone|11EmbracethegenerativeAIera:SixadoptionessentialsAneweraofgenerativeAIforeveryone|12EmbracethegenerativeAIera:SixadoptionessentialsDivein,withabusiness-drivenmindsetTakeapeople-?rstapproachGetyourproprietarydatareadyInvestinasustainabletechfoundationAccelerateecosysteminnovationLevel-upyourresponsibleAI1
2
3
4
5
6AneweraofgenerativeAIforeveryone|13EmbracethegenerativeAIera:Sixadoptionessentials1Divein,withabusiness-drivenmindsetEvenwhennewinnovationshaveobviousadvantages,diffusingthemacrossanorganizationcanbechallenging,especiallyiftheinnovationisdisruptivetocurrentwaysofworking.ByexperimentingwithgenerativeAIcapabilities,companieswilldeveloptheearlysuccesses,changeagentsandopinionleadersneededtoboostacceptanceandspreadtheinnovationfurther,kick-startingthetransformationandreskillingagenda.AbankusesenhancedsearchtoequipemployeeswiththerightinformationAspartofitsthree-yearinnovationplan,alargeEuropeanbankinggroupsawanopportunitytotransformitsknowledgebase,empoweritspeoplewithaccesstotherightinformation,andadvanceitsgoalofbecomingadata-drivenbank.UsingMicrosoft’sAzureplatformandaGPT-3LLMtosearchelectronicdocuments,userscangetquickanswerstotheirquestions—savingtimewhileimprovingaccuracyandcompliance.Theproject,whichincludedemployeeupskilling,isthe?rstoffourthatwillapplygenerativeAItotheareasofcontractmanagement,conversationalreportingandticketclassi?cation.Organizationsmusttakeadualapproachtoexperimentation.One,focusedonlow-hangingfruitopportunitiesusingconsumablemodelsandapplicationstorealizequickreturns.Theother,focusedonreinventionofbusiness,customerengagementandprodictsandservicesusingmodelsthatarecustomizedwiththeorganization’sdata.Abusiness-drivenmindsetiskeytode?ne,andsuccessfullydeliveron,thebusinesscase.Astheyexperimentandexplorereinventionopportunities,they’llreaptangiblevaluewhilelearningmoreaboutwhichtypesofAIaremostsuitedtodifferentusecases,sincethelevelofinvestmentandsophisticationrequiredwilldifferbasedontheusecase.They’llalsobeabletotestandimprovetheirapproachestodataprivacy,modelaccuracy,biasandfairnesswithcare,andlearnwhen“humanintheloop”safeguardsarenecessary.98%ofglobalexecutivesagreeAIfoundationmodelswillplayanimportantroleintheirorganizations’strategiesinthenext3to5years.10AneweraofgenerativeAIforeveryone|14EmbracethegenerativeAIera:Sixadoptionessentials2Figure4:GenerativeAIwilltransformworkacrosseveryjobcategoryTakeapeople-?rstapproachWorktimedistributionbymajoroccupationandpotentialAIimpactBasedontheiremploymentlevelsintheUSin2021OfficeandAdministrativeSupportSalesandRelated57%49%28%45%25%27%21%33%31%30%29%22%29%27%29%23%25%23%15%16%8%6%14%14%23%24%Successwithgenerative13%AIrequiresanequalattentiononpeopleandtrainingasitdoesontechnology.Companiesshouldthereforedramaticallyrampupinvestmentintalenttoaddresstwodistinctchallenges:creatingAIandusingAI.ThismeansbothbuildingtalentintechnicalcompetencieslikeAIengineeringandenterprisearchitectureandtrainingpeopleacrosstheorganizationtoworkeffectivelywithAI-infusedprocesses.Inouranalysisacross22jobcategories,forexample,wefoundthatLLMswillimpacteverycategory,rangingfrom9%ofaworkdayatthelowendto63%atthehighend.Morethanhalfofworkinghoursin5ofthe22occupationscanbetransformedbyLLMs.ComputerandMathematicalBusinessandFinancialOperationsArts,Design,Entertainment,Sports,andMediaLife,Physical,andSocialScienceArchitectureandEngineeringLegal32%23%17%14%35%6%LowerpotentialforHigherpotentialforautomationHigherpotentialforaugmentationaugmentationorautomationNon-languagetasks26%20%26%22%25%25%58%22%44%31%40%59%31%28%30%24%9%9%9%0%OcccupationAverage38%In5outof22occupationgroups,GenerativeAIcanaffectmorethanhalfofallhoursworkedManagement17%PersonalCareandService8%32%HealthcarePractitionersandTechnicalCommunityandSocialServiceHealthcareSupport15%22%7%6%8%34%ProtectiveService6%23%50%43%EducationalInstructionandLibraryFoodPreparationandServingRelatedTransportationandMaterialMovingConstructionandExtractionInstallation,Maintenance,andRepairFarming,Fishing,andForestryProduction8%19%5%9%61%Source:AccentureResearchbasedonanalysisofOccupationalInformationNetwork(O*NET),USDept.ofLabor;USBureauofLaborStatistics.4%7%75%66%66%4%7%1%9%Notes:Wemanuallyidenti?ed200tasksrelatedtolanguage(outof332includedinBLS),whichwerelinkedtoindustriesusingtheirshareineachoccupationandtheoccupations’employmentlevelineachjobcategory.TaskswithhigherpotentialforautomationcanbetransformedbyLLMswithreducedinvolvementfromahumanworker.TaskswithhigherpotentialforaugmentationarethoseinwhichLLMswouldneedmoreinvolvementfromhumanworkers.75%8%17%14%2%8%76%BuildingandGroundsCleaningandMaintenance9%0%7%84%??1??????????????????????????1???AneweraofgenerativeAIforeveryone|15EmbracethegenerativeAIera:Sixadoptionessentials2Infact,independenteconomicresearchindicatesthatcompaniesaresigni?cantlyunderinvestinginhelpingworkerskeepupwithadvancesinAI,whichrequiremorecognitivelycomplexandjudgment-basedtasks.11Evendomainexpertswhounderstandhowtoapplydataintherealworld(adoctorinterpretinghealthdata,forexample)willneedenoughtechnicalknowledgeofhowthesemodelsworktohavecon?denceinusingthemasa“workmate.”Figure5:Reinventingacustomerservicejob,taskbytaskToassesshowspeci?cjobswillbereinventedwithAI,anAccentureanalysisdecomposedonecustomerservicejobinto13componenttasks.Wefound:44Therewillalsobeentirelynewrolestorecruit,includinglinguisticsexperts,AIqualitycontrollers,AIeditors,andpromptengineers.InareaswheregenerativeAIshowsmostpromise,companiesshouldstartbydecomposingexistingjobsintounderlyingbundlesoftasks.ThenassesstheextenttowhichgenerativeAImightaffecteachtask—fullyautomated,augmented,orunaffected.taskswouldcontinuetobeperformedprimarilybyhumans,withlowpotentialforautomationoraugmentation.taskscouldbefullyautomated—suchasgathering,classifying,andsummarizinginformationonwhyacustomeriscontactingthecompany.5taskscouldbeaugmentedtohelphumansworkmoreeffectively—suchasusinganAIsummarytoprovidearapidsolutionwithahumantouch.Importantly,newjobtasksmightalsobeneededtoensurethesafe,accurateandresponsibleuseofAIincustomerservicesettings,suchasprovidingunbiasedinformationonproductsandpricing.AneweraofgenerativeAIforeveryone|16EmbracethegenerativeAIera:Sixadoptionessentials34GetyourproprietarydatareadyInvestinasustainabletechfoundationCustomizingfoundationmodelswillrequireaccesstodomain-speci?corganizationaldata,Companiesneedtoconsiderwhethertheyhavetherighttechnicalinfrastructure,architecture,operatingmodelandgovernancestructuretomeetthehighcomputedemandsofLLMsandgenerativeAI,whilekeepingacloseeyeoncostandsustainableenergyconsumption.They’llneedwaystoassessthecostandbene?tofusingthesetechnologiesversusotherAIoranalyticalapproachesthatmightbebettersuitedtoparticularusecases,whilealsobeingseveraltimeslessexpensive.semantics,knowledge,andmethodologies.Inthepre-generativeAIera,companiescouldstillgetvaluefromAIwithouthavingmodernizedtheirdataarchitectureandestatebytakingause-casecentricapproachto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年深冷技術設備合作協(xié)議書
- 北師大版歷史八年級上冊第21課《民族工業(yè)的曲折發(fā)展》聽課評課記錄
- 首師大版道德與法治七年級上冊10.1《多樣的情緒》聽課評課記錄
- 人教版地理七年級下冊《8.3撒哈拉以南非洲》聽課評課記錄
- 湘教版地理八年級上冊2.2《中國的氣候》聽課評課記錄
- 湘教版地理八年級下冊《第三節(jié) 東北地區(qū)的產(chǎn)業(yè)分布》聽課評課記錄2
- 環(huán)境工程投資咨詢合同(2篇)
- 新版華東師大版八年級數(shù)學下冊《16.2.1分式的乘除》聽評課記錄5
- 浙教版數(shù)學七年級下冊《5.5 分式方程》聽評課記錄2
- 湘教版數(shù)學七年級下冊5.2《旋轉(zhuǎn)》聽評課記錄
- 保潔班長演講稿
- 課題研究實施方案 范例及課題研究方法及技術路線圖模板
- 牙髓炎中牙髓干細胞與神經(jīng)支配的相互作用
- 勞務雇傭協(xié)議書范本
- 【2022屆高考英語讀后續(xù)寫】主題升華積累講義及高級句型積累
- JGJ52-2006 普通混凝土用砂、石質(zhì)量及檢驗方法標準
- 環(huán)境監(jiān)測的基本知識
- 電動車棚施工方案
- 《中國十大書法家》課件
- 超實用可編輯版中國地圖全圖及分省地圖
- 西方法律思想史ppt
評論
0/150
提交評論