2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)_第1頁
2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)_第2頁
2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)_第3頁
2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)_第4頁
2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021年江西省宜春市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)班級:________姓名:________考號:________

一、單選題(20題)1.A.b>a>0B.b<a<0C.a>b>0D.a<b<0

2.在等差數(shù)列{an}中,若a3+a17=10,則S19等于()A.65B.75C.85D.95

3.設(shè)l表示一條直線,α,β,γ表示三個不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β

B.若l//α,l//β,則α//β

C.若α//β,β//γ,則α//γ

D.若α//β,β//γ,則α//γ

4.如圖所示的程序框圖中,輸出的a的值是()A.2B.1/2C.-1/2D.-1

5.某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷量m(件)與x售價(元)滿足一次函數(shù):m=162-3x,若要每天獲得最大的銷售利潤,每件商品的售價應(yīng)定為()A.30元B.42元C.54元D.越高越好

6.下列各組數(shù)中,表示同一函數(shù)的是()A.

B.

C.

D.

7.已知b>0,㏒5b=a,㏒b=c,5d=10,則下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c

8.函數(shù)y=f(x)存在反函數(shù),若f(2)=-3,則函數(shù)y=f-1(x)的圖像經(jīng)過點()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)

9.已知等差數(shù)列的前n項和是,若,則等于()A.

B.

C.

D.

10.設(shè)a=1/2,b=5-1/2則()A.a>bB.a=bC.a<bD.不能確定

11.已知a=(1,-1),b=(-1,2),則(2a+b)×a=()A.1B.-1C.0D.2

12.設(shè)集合,則MS等于()A.{x|x>}

B.{x|x≥}

C.{x|x<}

D.{x|x≤}

13.某校選修乒乓球課程的學(xué)生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了6名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為()A.6B.8C.10D.12

14.已知讓點P到橢圓的一個焦點的距離為3,則它到另一個焦點的距離為()A.2B.3C.5D.7

15.過點A(-1,0),B(0,-1)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

16.已知A(3,1),B(6,1),C(4,3)D為線段BC的中點,則向量AC與DA的夾角是()A.

B.

C.

D.

17.正方體棱長為3,面對角線長為()A.

B.2

C.3

D.4

18.一個幾何體的三視圖如圖所示,則該幾何體可以是()A.棱柱B.棱臺C.圓柱D.圓臺

19.在等比數(shù)列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

20.已知兩直線y=ax-2和3x-(a+2)y+l=0互相平.行,則a等于()A.1或-3B.-1或3C.1和3D.-1或-3

二、填空題(10題)21.若=_____.

22.在平面直角坐標(biāo)系xOy中,直線2x+ay-1=0和直線(2a-1)x-y+1=0互相垂直,則實數(shù)a的值是______________.

23.己知三個數(shù)成等差數(shù)列,他們的和為18,平方和是116,則這三個數(shù)從小到大依次是_____.

24.

25.為橢圓的焦點,P為橢圓上任一點,則的周長是_____.

26.

27.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點P到直線b的距離為_____.

28.不等式|x-3|<1的解集是

。

29.設(shè)A(2,-4),B(0,4),則線段AB的中點坐標(biāo)為

30.已知向量a=(1,-1),b(2,x).若A×b=1,則x=______.

三、計算題(10題)31.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

32.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

33.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

34.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

35.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

36.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

37.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

38.甲、乙兩人進行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

39.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

40.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

四、簡答題(10題)41.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)

42.已知拋物線的焦點到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點下的坐標(biāo)。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。

43.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時,判斷f(x)的單調(diào)性并加以證明.

44.計算

45.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由

46.已知橢圓和直線,求當(dāng)m取何值時,橢圓與直線分別相交、相切、相離。

47.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積

48.已知A,B分別是橢圓的左右兩個焦點,o為坐標(biāo)的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標(biāo)準(zhǔn)方程

49.證明上是增函數(shù)

50.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.

五、解答題(10題)51.已知橢圓x2/a2+y2/b2=1(a>b>0)的離心率為,右焦點為(,0),斜率為1的直線L與橢圓G交于A,B兩點,以AB為底邊作等腰三角形,頂點為P(-3,2).(1)求橢圓G的方程;(2)求△PAB的面積.

52.已知函數(shù)f(x)=ax2-6lnx在點(1,f(1))處的切線方程為y=1;(1)求實數(shù)a,b的值;(2)求f(x)的最小值.

53.

54.

55.成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5(1)求數(shù)列{bn}的通項公式;(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+5/4}是等比數(shù)列

56.

57.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點.求證:(1)AC⊥BD1;(2)AE//平面BFD1.

58.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項公式;(2)設(shè)bn=2/n(an+2),求數(shù)列{bn}的前n項和Sn.

59.某學(xué)校高二年級一個學(xué)習(xí)興趣小組進行社會實踐活動,決定對某“著名品牌”A系列進行市場銷售量調(diào)研,通過對該品牌的A系列一個階段的調(diào)研得知,發(fā)現(xiàn)A系列每日的銷售量f(x)(單位:千克)與銷售價格x(元/千克)近似滿足關(guān)系式f(x)=a/x-4+10(1-7)2其中4<x<7,a為常數(shù).已知銷售價格為6元/千克時,每日可售出A系列15千克.(1)求函數(shù)f(x)的解析式;(2)若A系列的成本為4元/千克,試確定銷售價格x的值,使該商場每日銷售A系列所獲得的利潤最大.

60.

六、證明題(2題)61.若x∈(0,1),求證:log3X3<log3X<X3.

62.己知sin(θ+α)=sin(θ+β),求證:

參考答案

1.D

2.D

3.C

4.D程序框圖的運算.執(zhí)行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循環(huán),輸出-1。

5.B函數(shù)的實際應(yīng)用.設(shè)日銷售利潤為y元,則y=(x-30)(162-3x),30≤x≤54,將上式配方得y=-3(x-42)2+432,所以x=42時,利潤最大.

6.B

7.B對數(shù)值大小的比較.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,則55dc=5a,∴dc=a

8.A由反函數(shù)定義可知,其圖像過點(-3,2).

9.D設(shè)t=2n-1,則St=t(t+1+1)=t(t+2),故Sn=n(n+2)。

10.A數(shù)值的大小判斷

11.A平面向量的線性運算.因為a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

12.A由于MS表示既屬于集合M又屬于集合的所有元素的集合,因此MS=。

13.B分層抽樣方法.試題分析:根據(jù)題意,由分層抽樣知識可得:在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為:40×6/30=8

14.D

15.C直線的兩點式方程.點代入驗證方程.

16.C

17.C面對角線的判斷.面對角線長為

18.D空間幾何體的三視圖.從俯視圖可看出該幾何體上下底面為半徑不等的圓,正視圖與側(cè)視圖為等腰梯形,故此幾何體為圓臺.

19.D設(shè)公比等于q,則由題意可得,,解得,或。當(dāng)時,,當(dāng)時,,所以結(jié)果為。

20.A兩直線平行的性質(zhì).由題意知兩條直線的斜率均存在,因為兩直線互相.平

21.

,

22.2/3兩直線的位置關(guān)系.由題意得-2/a×(2a-1)=-1,解得a=2/3

23.4、6、8

24.56

25.18,

26.π

27.

,以直線b和A作平面,作P在該平面上的垂點D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

28.

29.(1,0)由題可知,線段AB的中點坐標(biāo)為x=(2+0)/2=1,y=(-4+4)/2=0。

30.1平面向量的線性運算.由題得A×b=1×2+(-1)×x=2-x=1,x=1。

31.

32.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4

33.

34.

35.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

36.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

37.

38.

39.

40.

41.

42.(1)拋物線焦點F(,0),準(zhǔn)線L:x=-,∴焦點到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴

43.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時

故當(dāng)X<-1時為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

44.

45.(1)(2)∴又∴函數(shù)是偶函數(shù)

46.∵∴當(dāng)△>0時,即,相交當(dāng)△=0時,即,相切當(dāng)△<0時,即,相離

47.

48.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

49.證明:任取且x1<x2∴即∴在是增函數(shù)

50.∵(1)這條弦與拋物線兩交點

51.

52.

53.

54.

55.(1)設(shè)成等差數(shù)列的三個正數(shù)分別為a-d,a,a+d依題意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次為7-d,10,18+d依題意,有(7-d)(18+d)=100,解得d=2或d=-13,又因為成等差數(shù)列的三個數(shù)為正數(shù),所以d=2.故{bn}的第3項為5,公比為2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4為首項,2為公比的等比數(shù)列,其通項公式為bn=5/4×2n-1=5×2n-3.

56.

57.(1)連接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因為BD1包含于平面BDD1→AC⊥BD1.(2)連接EF,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論