版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高一數(shù)學(xué)教案模板集錦數(shù)學(xué)教案(一)教學(xué)目標(biāo):①掌握對數(shù)函數(shù)的性質(zhì)。②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。③注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。教學(xué)重點(diǎn)與難點(diǎn):對數(shù)函數(shù)的性質(zhì)的應(yīng)用。教學(xué)過程設(shè)計(jì):⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。⒉開始正課1比較數(shù)的大小例1比較下列各組數(shù)的大小。⑴loga5.1,loga5.9(a>0,a≠1)⑵log0.50.6,logЛ0.5,lnЛ師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?生:這兩個對數(shù)底相等。師:那么對于兩個底相等的對數(shù)如何比大小?生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。師:對,請敘述一下這道題的解題過程。生:對數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0調(diào)遞減,所以loga5.1>loga5.9;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1板書:解:Ⅰ)當(dāng)0∵5.1<5.9∴l(xiāng)oga5.1>loga5.9Ⅱ)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9∴l(xiāng)oga5.1師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?生:這三個對數(shù)底、真數(shù)都不相等。師:那么對于這三個對數(shù)如何比大小?生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。板書:略。師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù)的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。2函數(shù)的定義域,值域及單調(diào)性。例2⑴求函數(shù)y=的定義域。⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。板書:解:∵2x-1≠0x≠0.5log0.8x-1≥0,x≤0.8x>0x>0∴x(0,0.5)∪(0.5,0.8〕師:接下來我們一起來解這個不等式。分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。師:請你寫一下這道題的解題過程。生:<板書>解:x2+2x-3>0x<-3或x>1(3x+3)>0,x>-1x2+2x-3<(3x+3)-2不等式的解為:1例3求下列函數(shù)的值域和單調(diào)區(qū)間。⑴y=log0.5(x-x2)⑵y=loga(x2+2x-3)(a>0,a≠1)師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。下面請同學(xué)們來解⑴。生:此函數(shù)可看作是由y=log0.5u,u=x-x2復(fù)合而成。板書:解:⑴∵u=x-x2>0,∴0u=x-x2=-(x-0.5)2+0.25,∴0∴y=log0.5u≥log0.50.25=2∴y≥2xx(0,0.5]x[0.5,1)u=x-x2y=log0.5uy=log0.5(x-x2)函數(shù)y=log0.5(x-x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞增區(qū)間[0.5,1)注:研究任何函數(shù)的性質(zhì)時,都應(yīng)該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學(xué)們觀察一下⑴與⑵有什么區(qū)別?生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。師:那么⑵如何來解?生:只要對a進(jìn)行分類討論,做法與⑴類似。板書:略。⒊小結(jié)這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對等價轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。⒋作業(yè)⑴解不等式①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)①求它的單調(diào)區(qū)間;②當(dāng)0⑶已知函數(shù)y=loga(a>0,b>0,且a≠1)①求它的定義域;②討論它的奇偶性;③討論它的單調(diào)性。⑷已知函數(shù)y=loga(ax-1)(a>0,a≠1),①求它的定義域;②當(dāng)x為何值時,函數(shù)值大于1;③討論它的單調(diào)性。5.課堂教學(xué)設(shè)計(jì)說明這節(jié)課是安排為習(xí)題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:一.比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域,值域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因?yàn)閷W(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨(dú)立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。數(shù)學(xué)教案(二)立體幾何初步1、柱、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點(diǎn)字母,如五棱臺幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。數(shù)學(xué)教案(三)函數(shù)的奇偶性一教材分析:本節(jié)課是高中數(shù)學(xué)人教B版必修一2.1.4的內(nèi)容,是學(xué)生在學(xué)習(xí)了函數(shù)、軸對稱和中心對稱圖形的基礎(chǔ)上來學(xué)習(xí)的,函數(shù)的奇偶性是考察函數(shù)性質(zhì)時的又一個重要方面。教材從具體到抽象,從感性到理性,循序漸進(jìn)地引導(dǎo)學(xué)生進(jìn)入數(shù)學(xué)領(lǐng)域進(jìn)行觀察、歸納,形成函數(shù)奇偶性概念。同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。二、確立教學(xué)目標(biāo)(1)知識目標(biāo):從形和數(shù)兩個方面進(jìn)行引導(dǎo),使學(xué)生理解奇偶性的概念,學(xué)會利用定義判斷簡單函數(shù)的奇偶性。(2)能力目標(biāo):通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推理的能力,同時滲透數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想方法.(3)情感目標(biāo):在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神。.教學(xué)重點(diǎn):函數(shù)奇偶性概念的形成教學(xué)難點(diǎn):函數(shù)奇偶性的判斷三、說教法和學(xué)法1、教法根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、設(shè)疑誘導(dǎo)法、類比法為輔。教學(xué)中,教師精心設(shè)計(jì)一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。2、學(xué)法讓學(xué)生在“觀察一歸納一檢驗(yàn)一應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生掌握知識。四、教學(xué)程序設(shè)計(jì):為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個主要的教學(xué)程序:(一)設(shè)疑導(dǎo)入,觀圖激趣。(二)指導(dǎo)觀察,形成概念。(三)學(xué)生探索、發(fā)展思維。(四)知識應(yīng)用,鞏固提高。(五)歸納小結(jié),布置作業(yè)。五、說課過程:(一)設(shè)疑導(dǎo)入、觀圖激趣。1、用多媒體展示一組圖片,讓學(xué)生感受生活中的美:對稱美,再讓學(xué)生舉例。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊。(二)指導(dǎo)觀察、形成概念。數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就同學(xué)們談到的與軸對稱的函數(shù)展開研究。先思考一個問題:哪些函數(shù)的圖象關(guān)于軸對稱?試舉例。然后以函數(shù)f(x)=x2和f(x)=︱x︱?yàn)槔?,學(xué)生動手作出圖像,讓學(xué)生回想,初中時怎樣判斷圖象關(guān)于軸對稱呢?此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示.借助課件演示(令得出等式比較,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性:,然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個都成立.最后讓學(xué)生用完整的語言給出偶函數(shù)定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.偶函數(shù)的定義:(板書)設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果對D內(nèi)的任意一個x,都有-x∈D且f(-x)=f(x),那么f(x)就叫做偶函數(shù).接著提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?然后多媒體展示兩個學(xué)生非常熟悉的函數(shù)f(x)?x和f(x)?1x的圖象讓學(xué)生觀察研究。引導(dǎo)學(xué)生用類比的方法,得出結(jié)論,再鼓勵學(xué)生給出奇函數(shù)的定義.奇函數(shù)的定義(板書)設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果對D內(nèi)的任意一個x,都有-x∈D且f(-x)=-f(x),那么f(x)就叫做奇函數(shù).(三)學(xué)生探索、深化概念:設(shè)計(jì)以下問題組織學(xué)生討論思考回答問題1:奇函數(shù)、偶函數(shù)的定義中有“任意”二字,說明函數(shù)的奇偶性是怎樣的一個性質(zhì)?與單調(diào)性有何區(qū)別?問題2:—x與x在幾何有何關(guān)系?具有奇偶性的函數(shù)的定義域有何特征?問題3:如果一個函數(shù)是奇函數(shù),且0在定義域內(nèi),f(0)??如果一個函數(shù)既是奇函數(shù),又是偶函數(shù),則f(x)有何特性?通過對三個問題的探討,引導(dǎo)學(xué)生認(rèn)識以下幾點(diǎn):(多媒體顯示)問題4:結(jié)合函數(shù)f(x)?1x的圖像回答以下問題:(1)對于任意一個奇函數(shù)f(x),圖像上的點(diǎn)P(x,f(x))關(guān)于原點(diǎn)的對稱點(diǎn)P’的坐標(biāo)是什么?點(diǎn)P’是否也在函數(shù)f(x)的圖像上?由此可得到怎樣的結(jié)論?(2)如果一個函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的中心對稱圖形,能否判斷它的奇偶性?學(xué)生通過交流探索問題4可以把奇函數(shù)的性質(zhì)出來,然后教師發(fā)動學(xué)生自己研究一下偶函數(shù)圖像的性質(zhì)(教師板書)(四)、知識應(yīng)用,鞏固提高。例1.判斷下列函數(shù)的奇偶性(1)f(x)=x4(2)f(x)=x5(3)f(x)=x+1/x(4)f(x)=1/x2選例1的第(1)小題板書來示范解題步驟,其他例題讓幾個學(xué)生板演,其余學(xué)生在下面完成。例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:(1)先求定義域,看是否關(guān)于原點(diǎn)對稱;(2)再判斷f(-x)=-f(x)還是f(-x)=f(x).結(jié)合例1的答案,發(fā)動學(xué)生思考:一個函數(shù)奇偶性的可能情況有幾種類型?(多媒體顯示)例1完成后,要求學(xué)生做練習(xí),及時鞏固,教師做好巡視指導(dǎo)練習(xí):教材第53頁,練習(xí)A第1題下面來學(xué)習(xí)例2、例3例2已知函數(shù)y=f(x)是偶函數(shù),它在y軸右邊的圖象如下圖,畫出在y軸左邊的圖象.(多媒體顯示)1例3研究函數(shù)y?2的性質(zhì)并作出它的圖像x課件演示例2,板書例3.例
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療衛(wèi)生公共管理新挑戰(zhàn)
- 農(nóng)業(yè)項(xiàng)目消防工程招標(biāo)文件
- 農(nóng)村道路改善工程合同
- 醫(yī)療器械儲存消毒
- 土地復(fù)墾框架協(xié)議
- 醫(yī)療器械貸后管理策略
- 文化產(chǎn)業(yè)園區(qū)房屋轉(zhuǎn)讓租賃合同
- 電力工程師聘用及培訓(xùn)協(xié)議
- 哈爾濱市消防員技能培訓(xùn)
- 勞動合同糾紛解決辦法
- 辦公室工作流程圖示
- 腎移植術(shù)的解剖(1)
- 《政務(wù)禮儀》PPT課件.ppt
- 2022年初中一年級生物上冊期中試卷及答案
- 四大名著稱四大小說三國演義西游記水滸傳紅樓夢中國古典章回小說PPT資料課件
- 一般跨越架搭設(shè)施工方案
- 《羊道春牧場》讀后感作文5篇
- 上消化道大出血的護(hù)理PPT課件
- RPG游戲概要設(shè)計(jì)文檔
- 鐵塔安裝施工方案(完整版)
評論
0/150
提交評論