版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年北京市航空航天大學附屬中學高三下學期期末試題數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.2.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.3.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.4.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.5.中,點在邊上,平分,若,,,,則()A. B. C. D.6.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)7.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.29.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.10.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.11.若復數(shù)()在復平面內(nèi)的對應點在直線上,則等于()A. B. C. D.12.若變量,滿足,則的最大值為()A.3 B.2 C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為________.14.已知定義在的函數(shù)滿足,且當時,,則的解集為__________________.15.已知是定義在上的偶函數(shù),其導函數(shù)為.若時,,則不等式的解集是___________.16.如圖是九位評委打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?18.(12分)中的內(nèi)角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.19.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.22.(10分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭山水田園交游送別羈旅思鄉(xiāng)其他總計篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關(guān)鍵字的選取規(guī)則為:①若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;②若“某字”被選為“某類別”關(guān)鍵字,則由其對應列聯(lián)表得到的的觀測值越大,排名就越靠前;設(shè)“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關(guān)鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數(shù)不含“花”的篇數(shù)總計附:,其中.0.050.0250.0103.8415.0246.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.2、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復合函數(shù)單調(diào)性判斷方法,屬于中檔題.3、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.4、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.5、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.6、C【解析】
求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.7、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價關(guān)系,即可得出。【詳解】設(shè)對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B?!军c睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。8、C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點睛】本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.9、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學生具備一定的計算能力,屬于中檔題.10、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.11、C【解析】
由題意得,可求得,再根據(jù)共軛復數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數(shù)的幾何表示和共軛復數(shù)的定義,屬于基礎(chǔ)題.12、D【解析】
畫出約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標分別為,目標函數(shù)的幾何意義為,可行域內(nèi)點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數(shù)的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數(shù),涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.14、【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價的不等式,可得解集.【詳解】因為定義在的函數(shù)滿足,所以函數(shù)是偶函數(shù),又當時,,得時,,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價于,即或,解得或,所以不等式的解集為:.故答案為:.【點睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.15、【解析】
構(gòu)造,先利用定義判斷的奇偶性,再利用導數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.16、1【解析】
寫出莖葉圖對應的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學生利用相關(guān)統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學期望是平均數(shù)的另一種數(shù)學語言,為容易題.18、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎(chǔ)題.19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標方程與直角坐標方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉(zhuǎn)化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎(chǔ)題.20、(1),;(2).【解析】
(1)利用極坐標和直角坐標的互化公式,即得解;(2)設(shè)點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標是,從而,點的極坐標是.(2)由(1)可知,點的直角坐標為,B的直角坐標為設(shè)點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【點睛】本題考查了極坐標和參數(shù)方程綜合,考查了極坐標和直角坐標互化,參數(shù)方程的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.21、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導數(shù)找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù).②當時,,.當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鈮合金行業(yè)前景趨勢展望及投資潛力分析報告
- 2025-2030年中國鈧礦市場發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025-2030年中國過濾材料市場運行狀況及前景趨勢分析報告
- 2025年度香港離婚協(xié)議書起草與婚姻終止法律文件制作合同3篇
- 2025年度車輛租賃公司信息化建設(shè)合同協(xié)議書2篇
- 2025年注冊通信工程師服務協(xié)議(通信網(wǎng)絡建設(shè))3篇
- 2024版車輛租賃委托合同范本
- 2024版新能源電池技術(shù)研發(fā)與轉(zhuǎn)讓合同3篇
- 2024版監(jiān)控設(shè)備安裝合同
- 印刷機械材料科學研究考核試卷
- 小兒甲型流感護理查房
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 寒假作業(yè)(試題)2024-2025學年五年級上冊數(shù)學 人教版(十二)
- 銀行信息安全保密培訓
- 市政道路工程交通疏解施工方案
- 2024年部編版初中七年級上冊歷史:部分練習題含答案
- 拆遷評估機構(gòu)選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級名校2025屆數(shù)學高一上期末達標檢測試題含解析
- 綜合實踐活動教案三上
- 《新能源汽車電氣設(shè)備構(gòu)造與維修》項目三 新能源汽車照明與信號系統(tǒng)檢修
評論
0/150
提交評論