天津市東麗2022年中考沖刺卷數(shù)學(xué)試題含解析_第1頁(yè)
天津市東麗2022年中考沖刺卷數(shù)學(xué)試題含解析_第2頁(yè)
天津市東麗2022年中考沖刺卷數(shù)學(xué)試題含解析_第3頁(yè)
天津市東麗2022年中考沖刺卷數(shù)學(xué)試題含解析_第4頁(yè)
天津市東麗2022年中考沖刺卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市東麗2022年中考沖刺卷數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如果關(guān)于的不等式組的整數(shù)解僅有、,那么適合這個(gè)不等式組的整數(shù)、組成的有序數(shù)對(duì)共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)2.不等式組的解集為.則的取值范圍為()A. B. C. D.3.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°4.下列圖形中,是中心對(duì)稱但不是軸對(duì)稱圖形的為()A. B.C. D.5.如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④6.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣37.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.128.如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.69.在直角坐標(biāo)系中,已知點(diǎn)P(3,4),現(xiàn)將點(diǎn)P作如下變換:①將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1;②作點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P2;③將點(diǎn)P繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)P3,則P1,P2,P3的坐標(biāo)分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)10.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,對(duì)角線BD的長(zhǎng)為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長(zhǎng)等于________.12.含45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.13.如圖,中,,,,,平分,與相交于點(diǎn),則的長(zhǎng)等于_____.14.化簡(jiǎn):①=_____;②=_____;③=_____.15.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.16.如圖,AB是⊙O的直徑,點(diǎn)E是的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長(zhǎng)線交該切線于點(diǎn)C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.17.瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請(qǐng)你根據(jù)這個(gè)規(guī)律寫出第9個(gè)數(shù)_____.三、解答題(共7小題,滿分69分)18.(10分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點(diǎn)到地面AD的距離(結(jié)果保留根號(hào)).19.(5分)計(jì)算:.20.(8分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.21.(10分)如圖,已知?ABCD.作∠B的平分線交AD于E點(diǎn)。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長(zhǎng)為10,CD=2,求DE的長(zhǎng)。22.(10分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.23.(12分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長(zhǎng);直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.24.(14分)某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關(guān)系式;(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)是多少元?(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時(shí),b=9、10、11;當(dāng)a=4時(shí),b=9、10、11;所以適合這個(gè)不等式組的整數(shù)a、b組成的有序數(shù)對(duì)(a,b)共有6個(gè),故選:D.【點(diǎn)睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對(duì)的應(yīng)用,解此題的根據(jù)是求出a、b的值.2、B【解析】

求出不等式組的解集,根據(jù)已知得出關(guān)于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點(diǎn)睛】本題考查了解一元一次不等式組的應(yīng)用,解此題的關(guān)鍵是能根據(jù)不等式組的解集和已知得出關(guān)于k的不等式,難度適中.3、B【解析】

利用三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個(gè)內(nèi)角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.【點(diǎn)睛】此題主要考查了三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個(gè)內(nèi)角之和.4、C【解析】試題分析:根據(jù)軸對(duì)稱圖形及中心對(duì)稱圖形的定義,結(jié)合所給圖形進(jìn)行判斷即可.A、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)正確;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.考點(diǎn):中心對(duì)稱圖形;軸對(duì)稱圖形.5、B【解析】

解:根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷:根據(jù)作圖過程可知:PB=CP,∵D為BC的中點(diǎn),∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點(diǎn),∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯(cuò)誤;④ED=AB正確.∴正確的有①②④.故選B.考點(diǎn):線段垂直平分線的性質(zhì).6、A【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.【詳解】∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點(diǎn)睛】本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理),韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=-ba,x1x2=7、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.8、A【解析】過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點(diǎn)A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點(diǎn)A的坐標(biāo)為(35a,4∵點(diǎn)A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點(diǎn)F的坐標(biāo)為(10+35b,4∵點(diǎn)F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點(diǎn)睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA9、D【解析】

把點(diǎn)P的橫坐標(biāo)減4,縱坐標(biāo)減3可得P1的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)不變,橫坐標(biāo)為原料坐標(biāo)的相反數(shù)可得P2的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)的相反數(shù)為P3的橫坐標(biāo),橫坐標(biāo)為P3的縱坐標(biāo)即可.【詳解】∵點(diǎn)P(3,4),將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1,∴P1的坐標(biāo)為(﹣1,1).∵點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)是P2,∴P2(﹣3,4).∵將點(diǎn)P繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)P3,∴P3(﹣4,3).故選D.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的變化;用到的知識(shí)點(diǎn)為:左右平移只改變點(diǎn)的橫坐標(biāo),左減右加,上下平移只改變點(diǎn)的縱坐標(biāo),上加下減;兩點(diǎn)關(guān)于y軸對(duì)稱,縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù);(a,b)繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到的點(diǎn)的坐標(biāo)為(﹣b,a).10、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項(xiàng)不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF.

故選B.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

設(shè)CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進(jìn)而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長(zhǎng)等于.【詳解】如圖,設(shè)CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長(zhǎng)等于AB=.故答案為.12、【解析】

過C作CD⊥x軸于點(diǎn)D,則可證得△AOB≌△CDA,可求得CD和OD的長(zhǎng),可求得C點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點(diǎn)D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設(shè)直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點(diǎn)睛】本題考查了待定系數(shù)法及全等三角形的判定和性質(zhì),構(gòu)造全等三角形求得C點(diǎn)坐標(biāo)是解題的關(guān)鍵.13、3【解析】

如圖,延長(zhǎng)CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長(zhǎng),進(jìn)而可得GH的長(zhǎng),根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長(zhǎng),根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長(zhǎng)CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點(diǎn)睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.14、455【解析】

根據(jù)二次根式的性質(zhì)即可求出答案.【詳解】①原式=4;②原式==5;③原式==5,故答案為:①4;②5;③5【點(diǎn)睛】本題考查二次根式的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用二次根式的性質(zhì),本題屬于基礎(chǔ)題型.15、4m【解析】

設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對(duì)應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因?yàn)閮扇讼嗑?.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.16、【解析】

首先根據(jù)切線的性質(zhì)及圓周角定理得CE的長(zhǎng)以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出DE,AD的長(zhǎng),利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點(diǎn)E是弧BF的中點(diǎn),∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點(diǎn),∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點(diǎn)睛】此題主要考查了扇形的面積計(jì)算以及三角形面積求法等知識(shí),根據(jù)已知得出△FOE和△AEF面積相等是解題關(guān)鍵.17、.【解析】

分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個(gè)數(shù)的分子是(9+2)2=121;第五個(gè)的分母是:32+13=45;第六個(gè)的分母是:45+15=60;第七個(gè)的分母是:60+17=77;第八個(gè)的分母是:77+19=96;則第九個(gè)的分母是:96+21=1.因而第九個(gè)數(shù)是:.故答案為:.【點(diǎn)睛】主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運(yùn)算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.三、解答題(共7小題,滿分69分)18、C點(diǎn)到地面AD的距離為:(2+2)m.【解析】

直接構(gòu)造直角三角形,再利用銳角三角函數(shù)關(guān)系得出BE,CF的長(zhǎng),進(jìn)而得出答案.【詳解】過點(diǎn)B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點(diǎn)到地面AD的距離為:【點(diǎn)睛】考查解直角三角形,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.19、.【解析】

利用特殊角的三角函數(shù)值以及負(fù)指數(shù)冪的性質(zhì)和絕對(duì)值的性質(zhì)化簡(jiǎn)即可得出答案.【詳解】解:原式==.故答案為.【點(diǎn)睛】本題考查實(shí)數(shù)運(yùn)算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.20、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】

(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時(shí)x的值即可得出答案.【詳解】(1)∵拋物線過點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時(shí),△PAB的面積有最大值;(3)△PDE為等腰直角三角形,

則PE=PD,

點(diǎn)P(m,-m2+2m+6),

函數(shù)的對(duì)稱軸為:x=2,則點(diǎn)E的橫坐標(biāo)為:4-m,

則PE=|2m-4|,

即-m2+2m+6+m-6=|2m-4|,

解得:m=4或-2或5+或5-(舍去-2和5+)

故點(diǎn)P的坐標(biāo)為:(4,6)或(5-,3-5).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.21、(1)作圖見解析;(2)1【解析】

(1)以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫弧分別與AB、BC相交。然后再分別以交點(diǎn)為圓心,以交點(diǎn)間的距離為半徑分別畫弧,兩弧相交于一點(diǎn),畫出射線BE即得.(2)根據(jù)平行四邊形的對(duì)邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯(cuò)角相等可得∠AEB=∠EBC,利用角平分線即得∠ABE=∠EBC,即證∠AEB=∠ABE.根據(jù)等角對(duì)等邊可得AB=AE=2,從而求出ED的長(zhǎng).【詳解】(1)解:如圖所示:(2)解:∵平行四邊形ABCD的周長(zhǎng)為10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【點(diǎn)睛】此題考查作圖-基本作圖和平行四邊形的性質(zhì),解題關(guān)鍵在于掌握作圖法則22、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】

(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長(zhǎng)度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個(gè)階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過點(diǎn)作軸于點(diǎn)M,則,,.過點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論