2011-2020年高考數(shù)學(xué)真題分專題訓(xùn)練 專題09 導(dǎo)數(shù)的綜合應(yīng)用(教師版含解析)_第1頁
2011-2020年高考數(shù)學(xué)真題分專題訓(xùn)練 專題09 導(dǎo)數(shù)的綜合應(yīng)用(教師版含解析)_第2頁
2011-2020年高考數(shù)學(xué)真題分專題訓(xùn)練 專題09 導(dǎo)數(shù)的綜合應(yīng)用(教師版含解析)_第3頁
2011-2020年高考數(shù)學(xué)真題分專題訓(xùn)練 專題09 導(dǎo)數(shù)的綜合應(yīng)用(教師版含解析)_第4頁
2011-2020年高考數(shù)學(xué)真題分專題訓(xùn)練 專題09 導(dǎo)數(shù)的綜合應(yīng)用(教師版含解析)_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題導(dǎo)數(shù)的綜合應(yīng)用十年大數(shù)據(jù)*全景展示題號(hào)考點(diǎn)考查內(nèi)容年份利用導(dǎo)數(shù)解決不等式恒()成立與探索性問題理21算求解能力及應(yīng)用意識(shí).2011函數(shù)的切線、證明不等式,考查分類整合思想.與導(dǎo)數(shù)的關(guān)系及不等式恒成立問題,考查分類整合思想、運(yùn)算求解能力及應(yīng)用意識(shí).文21利用導(dǎo)數(shù)解證不等式利用導(dǎo)數(shù)解決不等式恒文212012能)成立與探索性問題最值,考查運(yùn)算求解能力及應(yīng)用意識(shí).利用導(dǎo)數(shù)解決不等式恒2013卷1理21能)成立與探索性問題本方法,考查放縮思想、分析解決問題能力利用導(dǎo)數(shù)解決不等式恒卷2理21能)成立與探索性問題理11利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷1文12及分類整合思想,是難題.究函數(shù)的單調(diào)性、證明不等式,考查分類整合思想.類整合思想.卷1理21利用導(dǎo)數(shù)解證不等式2014利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷2文21究函數(shù)的圖像與性質(zhì)解函數(shù)不等式.卷1理12利用導(dǎo)數(shù)解證不等式分類整合思想.利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷1理212015究函數(shù)的圖像與性質(zhì)解函數(shù)不等式.卷2理2利用導(dǎo)數(shù)解證不等式卷2理21利用導(dǎo)數(shù)解決不等式恒能)成立與探索性問題整合思想.利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷1理21分類整合思想.利用導(dǎo)數(shù)解證不等式整合思想.2016利用導(dǎo)數(shù)解決不等式恒卷2文21能)成立與探索性問題究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式及分類整合思想.主要考查三棱錐的展開圖與圓的內(nèi)接關(guān)系、三棱錐的體積、利用導(dǎo)數(shù)求函數(shù)最值;考查數(shù)學(xué)應(yīng)用意識(shí).思想.卷3文21利用導(dǎo)數(shù)解證不等式卷1理16生活中的最優(yōu)化問題利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷1理21整合思想.利用導(dǎo)數(shù)解決不等式恒卷1文21能)成立與探索性問題等式及分類整合思想.利用導(dǎo)數(shù)解證不等式卷2理21不等式恒成立問題2017整合思想利用導(dǎo)數(shù)解決不等式恒卷2文21能)成立與探索性問題理11利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷3文12究函數(shù)零點(diǎn)問題及分類整合思想.整合思想利用導(dǎo)數(shù)解決不等式恒卷3理21能)成立與探索性問題整合思想卷3文21利用導(dǎo)數(shù)解證不等式卷1理21利用導(dǎo)數(shù)解證不等式用導(dǎo)數(shù)證明不等式及分類整合思想用導(dǎo)數(shù)證明不等式卷1文21利用導(dǎo)數(shù)解證不等式利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)不等式、利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問題.卷2理21卷2文212018利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)主要考查常見函數(shù)的導(dǎo)數(shù)、利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問題.明不等式、導(dǎo)數(shù)與極值的關(guān)系卷3理21利用導(dǎo)數(shù)解證不等式卷3文21利用導(dǎo)數(shù)解證不等式幾何意義求函數(shù)的切線、利用導(dǎo)數(shù)證明不等式利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問題.利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷1理20卷2理202019究函數(shù)零點(diǎn)問題及利用導(dǎo)數(shù)的幾何意義研究切線.性問題,考查分類整合思想.利用導(dǎo)數(shù)解決不等式恒卷3理20能)成立與探索性問題1.利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問題卷1文212.利用導(dǎo)數(shù)解決不等式恒(能)成立與探索性問整合思想.題利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)卷2文21的參數(shù)取值范圍問題理導(dǎo)數(shù)的綜合應(yīng)用文導(dǎo)數(shù)的綜合應(yīng)用卷12020取值范圍卷2理導(dǎo)數(shù)的綜合應(yīng)用應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,應(yīng)用導(dǎo)數(shù)證明不等式文導(dǎo)數(shù)的綜合應(yīng)用理導(dǎo)數(shù)的綜合應(yīng)用文導(dǎo)數(shù)的綜合應(yīng)用的參數(shù)取值范圍問題卷3取值范圍大數(shù)據(jù)分析預(yù)測(cè)高考出現(xiàn)頻率考點(diǎn)2021年預(yù)測(cè)生活中的最優(yōu)化問題1/342021年高考在導(dǎo)數(shù)綜合應(yīng)用方面,仍將以選填壓軸題或解答題壓軸題形式考查不等式恒(能)成立問題與探利用導(dǎo)數(shù)解決不等式恒(能)成立與探索性問題11/34利用導(dǎo)數(shù)解、證不等式利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問題12/3410/34十年試題分類探求規(guī)律考點(diǎn)30生活中的最優(yōu)化問題.(2017全國(guó)卷1理如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形的中心為O.D,E,F(xiàn)為圓O上的點(diǎn),△DBC,△ECA,△分別是以BC,CA,為底邊的等腰三角形.沿虛BC為折痕折起△DBCECADEF的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm)的最大值為.【答案】415【解析】如下圖,連接DO交于點(diǎn)G,設(shè)D,E,F(xiàn)重合于S點(diǎn),正三角形的邊長(zhǎng)為(>0),則133xx.x,32635622333SOhSG225xx55x,663113315353三棱錐的體積VShx255x5x4x.△ABC3343123533設(shè)nx5x45xx>0nx20x3x4,3x4令nx04x0x43,易知nx在x43處取得最大值.33∴48544.(2020O在水平線MN橋AB與MN為鉛垂線(O在AB)上任一點(diǎn)DMN的距離h到(米)11的距離a米)之間滿足關(guān)系式12Fh)與F(2與D到a上任一點(diǎn)的距離為B到MN的距離401hbb.己知點(diǎn)到3到的距離b()之間滿足關(guān)系式2800AB的長(zhǎng)度;計(jì)劃在谷底兩側(cè)建造平行于的橋墩和EF為CE在AB上(不包括端點(diǎn))3墩EF每米造價(jià)k(萬元),橋墩每米造價(jià)k(萬元)(k0),2問O'E為多少米時(shí),橋墩與EF的總造價(jià)最低?(2)OE為米時(shí),橋墩與EF的總造價(jià)最低.【答案】橋AB的長(zhǎng)度為【解析】過A,B分別作MNB的垂線,垂足為,1AABB403640160.8001令,∴,.a(chǎn)2160a400x40080x80得0x.設(shè)OExxk11kyx)2k160(x6x)]3(x330xx0或,2160800)總造價(jià)240800800kyk3x260x)x(x20)k0,∴令y08008000xy0y,單調(diào)遞減;當(dāng)xy0y,單調(diào)遞增,∴當(dāng)xy取最小值,造價(jià)最低.考點(diǎn)31利用導(dǎo)數(shù)解決恒成立問題與探索性問題x22ax2a,x1.(2019天津理8)已知aR,設(shè)函數(shù)f(x)xalnx,x1,若關(guān)于x的不等式f(x)0在R上恒成立,則a的取值范圍為A..0,2.0,eD.1,e【解析】當(dāng)x1f11aa10恒成立;x2當(dāng)x1fxx2a?0a?恒成立,x11x11x221xx2x21x21x1令gxx11x2?20,11x11x1x21xagx?a0.0x當(dāng)x1fxxax??0a恒成立,x1xxx1xx令hxhx,xx22x當(dāng)xehx0,hx遞增,當(dāng)1xehx0,hx遞減,所以當(dāng)xehx取得最小值hee.a(chǎn)hx?.e綜上,a的取值范圍是0,e..(2014遼寧)當(dāng)x[時(shí),不等式ax3x24x30恒成立,則實(shí)數(shù)a的取值范圍是()9A.[B.[]C.[D.[8【答案】C【解析】當(dāng)x時(shí),得a≥tttgt)t1111a≥)34()2tt),xxxx323tt,t),2t2t1tt,顯然在)gt0,則gxg(t)單調(diào)遞減,所以gt)g6,因此a≥6;同理,當(dāng)x[0)時(shí),得a≤2.由以上兩種情況得6≤a≤2.顯然當(dāng)x0時(shí)也成立,故實(shí)數(shù)a的取值范圍為[2].x2.fxex.(2020全國(guó)Ⅰ理21)已知函數(shù)fx的單調(diào)性;當(dāng)a1時(shí),討論1fxx1a的取值范圍.3當(dāng)x02x,0f'xfx單調(diào)遞減,當(dāng)xf'x0,fx單調(diào)遞增;(1)當(dāng)7e2,.4【思路導(dǎo)引】由題意首先對(duì)函數(shù)二次求導(dǎo),然后確定導(dǎo)函數(shù)的符號(hào),最后確定原函數(shù)的單調(diào)性即可;首先討論x0a的取值范圍.fxe,【解析】當(dāng)a1fxexx2x'x2x1,fxex20f'xf'00,故:?jiǎn)握{(diào)遞增,注意到x,0f'xfx單調(diào)遞減;當(dāng)當(dāng)xf'x0,fx單調(diào)遞增.11fx1eax?x2x31,其中x0,x3由22①.當(dāng)x=0時(shí),不等式為:11,顯然成立,符合題意;1exx32x1②.當(dāng)x0時(shí),分離參數(shù)a2,?x11,xx32x1x2exx2x1e記2,23gxg'xxx12exx2x1x0h'xexx1,hxex10,hx令故由當(dāng)h'xh'xh'00,故函數(shù)hx單調(diào)遞增,hxh00,單調(diào)遞增,10,2g'x0gx,單調(diào)遞增;hx0可得:exx2x0x恒成立,故當(dāng)2xg'x0,gx單調(diào)遞減;27e27e,因此,gxg2.綜上可得,實(shí)數(shù)a的取值范圍是.44.(2020全國(guó)Ⅱ文21)已知函數(shù)fx2lnx1.若fx2xcc的取值范圍;fxfa設(shè)a0,討論函數(shù)gx的單調(diào)性.xa和【答案】c1;(2)g(x)在區(qū)間a)(a,)上單調(diào)遞減,沒有遞增區(qū)間.f(x)2xcf(x)2xc0,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出新函數(shù)的最大【思路導(dǎo)引】(1)不等式轉(zhuǎn)化為值,進(jìn)而進(jìn)行求解即可;對(duì)函數(shù)g(x)的分子構(gòu)成一個(gè)新函數(shù)m(x)(x)(x)的正負(fù),g(x)m(x)的單調(diào)性,進(jìn)而確定g(x)的正負(fù)性,最后求出函數(shù)g(x)的單調(diào)性.【解析】f(x)的定義域?yàn)椋?,f(x)2xcf(x)2xc02lnx12xc),2x)設(shè)h(x)2lnx12xc(x0),則有h(x)2,xxx1h(x)h(x)0x1時(shí),h(x)h(x)當(dāng)x1h(x)當(dāng)有最大值,即h(x)h2ln1121c1c,要想不等式)在)上恒成立,只需h(x)01c0c1.2lnx1(2axa)2(xaxxxa)(x0xa)且g(x)g(x),xaxax(xa)2設(shè)m(x)2(xaxxxa),則有m(x)ax),xaxa,∴m(x)0,m(x)單調(diào)遞減,因此有m(x)m(a)0當(dāng)g(x)0g(x)單調(diào)遞減;當(dāng)0xa時(shí),xamg(x)在區(qū)間a)(x)0m(x)m(x)m(a)0g(x)0g(x)單調(diào)遞減,∴函數(shù)和(a,)上單調(diào)遞減,沒有遞增區(qū)間.xa.(202021)已知函數(shù)f(x)ex1.當(dāng)ae時(shí),求曲線yf(x)1,f1處的切線與兩個(gè)坐標(biāo)軸圍成的三角形的面積;若f(x)1a的取值范圍.2e1【答案】(2))【思路導(dǎo)引】先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點(diǎn)斜式得切線方程,求出與坐標(biāo)軸交點(diǎn)坐標(biāo),最后根據(jù)三角形面積公式得結(jié)果;先二次求導(dǎo),研究導(dǎo)函數(shù)符號(hào)變化情況,求出函數(shù)最小值,再根據(jù)基本不等式求最小值的最小值,最后根據(jù)不等式恒成立列不等式,解得結(jié)果.1Qf(x)exx1f(x)exkfe1【解析】.x2e1Qfe切線方程為ye1(ex,與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為(,0),122因此所求三角形面積為|e1e1.21f(x)aex1xa,f(x)aex1,a0g(x)f(x),Qx1Qg(x)aex1g(x)在)上單調(diào)遞增,即f(x)在)上單調(diào)遞增,x21f(x)ae010當(dāng)a1x10,00111111當(dāng)a1ef()fa(ea0,aaaa111111當(dāng)0a1ef()fa(ea0,aaaa11f(x)ae010,x10,lnax1x,0x00因此存在唯一,使得0000xx)f(x)0x(x,)f(x)0時(shí)0,當(dāng)時(shí)011f(x)f(x)ae00a1lna01lna2lna1202lna1,000f(x)aex1xa1對(duì)x0恒成立,2lnaaa1.Q.(2019全國(guó)Ⅰ文20)已知函數(shù)()=2sinxxcos-xf′()為(x)的導(dǎo)數(shù).證明:f′(x)在區(qū)間(0π)存在唯一零點(diǎn);若x[0,π]時(shí),(x)≥a的取值范圍.【解析】設(shè)g(x)f(x)g(x)xxsinxg(x)xx.ππ,πππ2當(dāng)x)時(shí),g(x)0;當(dāng)x時(shí),在g(x)0,所以g(x))單調(diào)遞增,在,π單調(diào)222遞減.π又g(0)gg(π)2g(x)在(0,π)存在唯一零點(diǎn).2f(x)在(0,π)存在唯一零點(diǎn).由題設(shè)知f(π)?aπ,f(π)0,可得a≤0.x0x0,πf(x)0,(1)f(x)在(0,π)xf(x)00x,π單調(diào)遞減.0xf(x)在單調(diào)遞增,在0又f(0)f(π)0,所以,當(dāng)x[0,π]f(x0.xπ]時(shí),≤0f(x?ax.因此,a的取值范圍是(,0].f(x)ex(exa)ax.2.(2017新課標(biāo)Ⅰ文21)已知函數(shù)f(x)的單調(diào)性;若f(x)≥0a的取值范圍.【解析】(1)函數(shù)f(x)的定義域?yàn)?,),f(x)e2xxa2(2exaea),x①若a0,則f(x)e2x,在(,)單調(diào)遞增.②若a0,則由f(x)0得xa.當(dāng)x(,lna)時(shí),f(x)0;當(dāng)xa,)時(shí),f(x)0,所以f(x)在(,lna)單調(diào)遞減,在a,)單調(diào)遞增.a(chǎn)③若a0,則由f(x)0得x).2aa當(dāng)x(,時(shí),f(x)0;當(dāng)x),)時(shí),f(x)0,22aa故f(x)在(,))單調(diào)遞減,在(ln(),)單調(diào)遞增.22(2)①若a0,則f(x)e2x,所以f(x)≥0.②若a0,則由(1)得,當(dāng)xa時(shí),f(x)取得最小值,最小值為fa)a2a.從而當(dāng)且僅當(dāng)aa0,即a≤1時(shí),f(x)≥0.2a③若a0,則由(1)得,當(dāng)xln()f(x)取得最小值,最小值為2a3af(ln(a[ln(.224233a從而當(dāng)且僅當(dāng)a[ln(0a2e4時(shí)f(x)≥0.24234綜上,a的取值范圍為[2e.f(x)x)ex.2.(2017新課標(biāo)Ⅱ)設(shè)函數(shù)f(x)的單調(diào)性;當(dāng)x≥0f(x)≤ax1a的取值范圍.f(x)2xx2)ex【解析】12,x12.令f(x)0得x當(dāng)x(,12)f(x)0x(12,12)f(x)0x(12,)時(shí),f(x)0.f(x)在(,12),(12,)單調(diào)遞減,在(12,12)單調(diào)遞增.()fxxxex.)當(dāng)a≥1時(shí),設(shè)函數(shù)h(x)xex,h(x))x0,因此h(x)在)單調(diào)遞減,而h(0)1,故h(x)≤1,所以f(x)(xh(x)≤x1≤ax1.當(dāng)0a1時(shí),設(shè)函數(shù)g(x)exx,g(x)e1x10(x,所以g(x)在)單調(diào)遞增,而g(0)0e≥x1.x當(dāng)0x1f(x)xx)2,xx)2ax1xaxx),254a1取00,xx)010,0022故f(x)1.0051當(dāng)a≤0時(shí),取00,f(x)xx)1≥01.00022綜上,a的取值范圍是)..(2017全國(guó)卷3理21)已知函數(shù)fxx1alnx.若fx0a的值;1設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,111mm的最小值.21122n2.【解析】fx的定義域?yàn)?21a0,因?yàn)閒=-+a20,所以不滿足題意;2axaa0f'x1x0,a時(shí),f'x0x時(shí),f'x0xx以fx在0,a單調(diào)遞減,在單調(diào)遞增,故x=a是fx在的唯一最小值點(diǎn).f10,所以當(dāng)且僅當(dāng)afx0a=1..(2016文21)已知函數(shù)f(x)(xxa(x.a(chǎn)4yf(x)時(shí),求曲線在f處的切線方程;Ⅰ)當(dāng)xf(x0a的取值范圍.Ⅱ)【解析】Ⅰ)f(x)的定義域?yàn)?a41f(x)(xx4(xfxx()3,f0.fxyf(x)在f處的切線方程為2xy2a(xⅡ)當(dāng)x)f(x)0等價(jià)于x0.x1a(xx1g(x)x令12axa)x12g(x),g0,x(x2x(x2(i)當(dāng)a2,x)x2a)x1x2x10,2;故g(x)g(x)x)上單調(diào)遞增,因此g(x)0在當(dāng)a2時(shí),令g(x)0得1a1(a22a1(a21,由x1和xx1得x1,故當(dāng)xx)時(shí),g(x)0g(x)在xx)單調(diào)遞減,因此,212122g(x)g0.綜上,a的取值范圍是,2.f(x)ex.2(2015新課標(biāo)Ⅱ理設(shè)函數(shù)Ⅰ)證明:f(x)在(,0)單調(diào)遞減,在)單調(diào)遞增;Ⅱ)若對(duì)于任意x,x[,都有|f(x)f(x)|≤e1m的取值范圍.1212fxm(e2x.【解析】Ⅰ)()若m≥0,則當(dāng)x(,0)e≤,f(x)0;10當(dāng)x)e≥,f(x)0.1010若m<0,則當(dāng)x(,0)e,f(x)0;10當(dāng)x)e,f(x)0.所以,f(x)在(,0)單調(diào)遞減,在)單調(diào)遞增.Ⅱ)由()知,對(duì)任意的m,f(x)在[0]單調(diào)遞減,在單調(diào)遞增.故f(x)在x=0處取得最小值.所以對(duì)于任意x,x[,|f(x)f(x)≤e1的充要條件是:1212ff(0)≤e1f(f(0)≤e1emm≤e1①emm≤e1設(shè)函數(shù)gt)ettegt)e1t1.當(dāng)t<0gt)0t>0時(shí)gt)0.故g(t)在(,0)單調(diào)遞減,在)單調(diào)遞增.又g=0,g(e2e01,故當(dāng)t[gt)≤0.當(dāng)m[g(m)≤g(m)≤0,即①式成立;當(dāng)m>1時(shí),由g(t)得單調(diào)性,g(m)>0eme;m1當(dāng)m1時(shí),g(m)0emme1綜上,m的取值范圍是[..(2013全國(guó)卷1理已知函數(shù)f(x)=x2axb,g(x)=ex(d),若曲線yf(x)yg(x)都過點(diǎn)P(02),且在點(diǎn)P處有相同的切線y4x2Ⅰ)求a,b,c,dⅡ)若x≥-2f(x)≤kg(x)k的取值范圍.【解析】Ⅰ)由已知得f(0)g(0)f(0)g(0)4,而f(x)=2xb,g(x)=e(dc),∴a=4,b=2,c=2,d=2;……4分xf(x)x4x2,g(x)e(x,設(shè)函數(shù)F(x)=(x)f(x)=2(xx4x2(x2),,2xⅡ)由()x2xxF(x)=2(x2x4=2(x2)(有題設(shè)可得F(0)≥k1,令F(x)x=k,x-,12若1ke22<x0x(x)F(x)0x(x,)F(x)>0F(x)111在(x)單調(diào)遞減,在(x,)單調(diào)遞增,故F(x)在x=x取最小值F(x),而1111F(x)=2x2x214x2=x(x≥0,11111x≥-2F(x)≥0f(x)≤kg(x)恒成立,ke2F(x)=2e(x2)(ee),2x2若x≥-2F(x)≥0F(x)(-2∞)單調(diào)遞增,而F(=0,x≥-2F(x)≥0f(x)≤kg(x)恒成立,ke2F(=222=2e2(ke)0,2若x≥-2f(x)≤kg(x)不可能恒成立,綜上所述,k的取值范圍為[1,e2]..(2012全國(guó)課標(biāo)文設(shè)函數(shù)(x)=exax2Ⅰ)求(x)的單調(diào)區(qū)間Ⅱ)若=1,k為整數(shù),且當(dāng)x時(shí),(-k)′(xx+1>0k的最大值,x【解析】(Ⅰ)fx的定義域?yàn)?,fxea.若a0,則fx0fx的增區(qū)間為,,無減區(qū)間;若a0x,lnafx0;當(dāng)x,fx0,lna,.增區(qū)間為,(Ⅱ)a=1,所以xkfxx1xke1x1.xx0時(shí),(xk)f′xx+1>0等價(jià)于x1kxx0,xe1exx2xx11xe令gxxgx12.ex1exex12hxehxx2在h20hx在(Ⅰ)上存在唯一的零點(diǎn),故gx在上存在唯一零點(diǎn).設(shè)此零點(diǎn)為1,2.當(dāng)x時(shí),gx0x,時(shí),gx0gx在上的最小值為g由gk,可得x112,3.2,所以gxx0等價(jià)于kg,故整數(shù)k的最大值為2.xe1axbx1x14.全國(guó)課標(biāo)理21)已知函數(shù)f(x)=,曲線y=f(x)在點(diǎn)(1,f)處的切線方程為x2y30.Ⅰ)求a,b的值;xkx1xⅡ)如果當(dāng)x0x1f(x)>k的取值范圍.x1a(x)2bx2【解析】Ⅰ)f(x)=,(x2x112x2y3的斜率為,且過點(diǎn)(11),∴f且f=,2b1即a1,解得a=1,b=1;b22xx1x1Ⅱ)由()知f(x)=,1(k)x2)(kxxk∴f(x)()=(2x2x1x1xx(k)x222x設(shè)h(x)=2lnx(x0)h(x)=xx2k(x2(x2x1h(x)0h=0x∈(01)h(x)k≤0h(x)=x211x0,可得h(x)0;211x當(dāng)x∈,+)h(x)<0,可得h(x)0,2xkx1xxk;x1x從而當(dāng)x>0x1f(x)(0<k<1x∈(1,)0f(x)>11k)(kx22x>h(x)>h=0x(1,11k11x)h(x)>0,可得h(x)0與題設(shè)矛盾;211xh(x)0,與題設(shè)③當(dāng)k≥1時(shí),此時(shí)h(x)>0,而h=0,故當(dāng)x(1,+∞)時(shí),h(x)>0,可得2矛盾,綜上所述,k的取值范圍為(—∞,0].f(x)2x3b.2.(2019全國(guó)Ⅲ理20)已知函數(shù)f(x)是否存在不存在,說明理由.的單調(diào)性;a,b,使得f(x)在區(qū)間的最小值為1且最大值為?若存在,求出a,b的所有值;若222x(3xa).【解析】f(x)6xaf(x)0x令或.3a3,ax若a,則當(dāng)x(,0)f(x)0;當(dāng)f(x)0.故f(x)在時(shí),時(shí),3a,a(,0),3單調(diào)遞增,在單調(diào)遞減;3f(x)在(,)若a=0,單調(diào)遞增;a3ax,0x,)時(shí),f(x)0f(x)0f(x).故在若,則當(dāng);當(dāng)時(shí),3a3a3,,(0,)單調(diào)遞增,在,0單調(diào)遞減.滿足題設(shè)條件的ab存在.f(x)f(x)fb在區(qū)間[0,l]的最小值為(i)當(dāng)a≤0時(shí),由(1)知,在[0,1]單調(diào)遞增,所以,最大值為,最小值為f2abab滿足題設(shè)條件當(dāng)且僅當(dāng)b1,2ab1a=0,b1.f(x)f(x)fb(ii)當(dāng)a≥3時(shí),由(1)知,在[0,1]單調(diào)遞減,所以在區(qū)間[0,1]的最大值為f2ab.此時(shí)ab滿足題設(shè)條件當(dāng)且僅當(dāng)2ab1,b=1a=4,b=1.a(chǎn)3a3f(x)fb,最大值為b或2ab.(iii)當(dāng)0<a時(shí),由(1)[0,的最小值為27a3若b1,=1a3320<矛盾.a(chǎn)3若b1,2ab1a33或a33或a=00<a矛盾..(201922)已知實(shí)數(shù)a0,設(shè)函數(shù)f(x)=axxx0.3當(dāng)a時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;41x對(duì)任意x[,)f(x),求a的取值范圍.e22a343【解析】當(dāng)af(x)x1x,x0.431(1x2)(21x4x1xf'(x),4x21x所以,函數(shù)f(x)的單調(diào)遞減區(qū)間為(03),單調(diào)遞增區(qū)間為(3,+).12由f0a.2a42xx21x當(dāng)0af(x)等價(jià)于2lnx0.42aa2a1令tt22.a(chǎn)gt)t2xt1x2lnx,t22設(shè)gt)g(22)8x421x2lnx.171(i)當(dāng)x,122xgt)g(22)8x421x2lnx.1記p(x)4x221xx,x72212xx12xx1xx1(x).xx1x故171x()+17(x)p(x)01p()極小值p單調(diào)遞減單調(diào)遞增7所以,p(x)p0.因此,gt)g(22)2p(x)0.1112xx(x2x當(dāng)x,gt?g1.e27x11x2令q(x)2xx(xxe,q'(x)10,27x1117故q(x)在,上單調(diào)遞增,所以q(xq.e27172717277(i)得qp7p0.所以,qx.1q(x)2xgt?g10.x1(i)(ii)得對(duì)任意x,,t[22,gt0,e21x即對(duì)任意x,,均有f(x?.e22a2綜上所述,所求a的取值范圍是4考點(diǎn)32利用導(dǎo)數(shù)解、證不等式問題.(2020全國(guó)Ⅱ理21)已知函數(shù)fxsin2xsin2x.fx在區(qū)間0,的單調(diào)性;33證明:fx;83nn設(shè)nN*,證明:sin2xsin22xsin24xsin22nx.4x33單調(diào)遞減,f'xfx時(shí),3f'x0,fxx,(1)當(dāng),x單調(diào)遞增.證明見解析;(3)證明見解析.f'x0,fx當(dāng)3【思路導(dǎo)引】首先求得導(dǎo)函數(shù)的解析式,然后由導(dǎo)函數(shù)的零點(diǎn)確定其在各個(gè)區(qū)間上的符號(hào),最后確定原函數(shù)的單調(diào)性即可;(2)首先確定函數(shù)的周期性,然后結(jié)合(1)中的結(jié)論確定函數(shù)在一個(gè)周期內(nèi)的最大值和最小值即可證得題中的不等式;(3)對(duì)所給的不等式左側(cè)進(jìn)行恒等變形可得2fxn1(2)的結(jié)論和三角sinxsinxsin2xsin2xsin4xsin2xsin2xsin2x222n2n3函數(shù)的有界性進(jìn)行放縮即可證得題中的不等式.fx2sinxx,則:【解析】由函數(shù)的解析式可得:3f'x23sinxxsinx2sinx3cosxsinx224222xx2x12x12sin2x422sin2,在上的根為:f'x0x,1,2333xf'x0,fx單調(diào)遞增;當(dāng)當(dāng)當(dāng)x33,f'xfx單調(diào)遞減;,x單調(diào)遞增.f'x0,fx3fxsin注意到2xsin2xsin2xsin2xfx,fx是周期為的函數(shù),結(jié)合的結(jié)論,計(jì)算可得:(1)f0f0,故函數(shù)2233333383333f,f,22228338338338fxfx據(jù)此可得:fx,.結(jié)合(2)的結(jié)論有:22x22x24x222nx3333nsinxsin2xsin4xsin2x323sinxsinxsin2xsin2xsin4xsin22n1xsin2xsin2x2n2n223338n33n333333sinxsin22nx.4888113.(2020全國(guó)Ⅲ理21)設(shè)fxxc,xR,曲線fx,f處的切線與y軸垂直.22求b;若fx有一個(gè)絕對(duì)值不大于1的零點(diǎn),證明:fx的所有零點(diǎn)的絕對(duì)值都不大于1.【答案】1f'()0【思路導(dǎo)引】利用導(dǎo)數(shù)的幾何意義得到,解方程即可;231111112f'(x)3x22(x)(x)f(x)(,)在(,)(,)由(1),422222111111f(c,f()c,f()c,fc424244122134【解析】(1)f(x)3xb,2f()3b即b.23解法一:設(shè)x為f(x)的一個(gè)零點(diǎn),根據(jù)題意,()fxx3xc0x14334121122cx在,,,cxx31,c32,顯然41211142114211141,易得c,c,c,cc4443131設(shè)x為f(x)的零點(diǎn),則必有f(x)x31xc0cxx3,1111144443124x3x1x12x101111x1x1f(x)的所有零點(diǎn)的絕對(duì)值都不大于1.114x3x1x2x03211113311f(x)x3xcf'(x)3x2x)(x)解法二:由(1),,414122112x'x令∴且若f'(x)0x或f(x)0,22211上單調(diào)遞減,在(,11在(,)22(,)),上單調(diào)遞增,f(x)22111111f(c,f()c,f()c,fc,4242441414f(0f0c或或cf(x)所有零點(diǎn)中存在一個(gè)絕對(duì)值大于1的零點(diǎn)x0.14111111當(dāng)cf(cf()cf()cfc0,424244f(4c)64c3cc4c16c)0,由零點(diǎn)存在性定理知f(x)在(4c,上存在唯一一個(gè)零2又f(x)在(,上存在唯一一個(gè)零點(diǎn),在()點(diǎn)0上不存在零點(diǎn),f(x)不存在絕對(duì)值不大于1的零點(diǎn),與題設(shè)矛盾;14111111當(dāng)cf(cf()cf()cfc0,424244f(4c)64c3cc4c16c2)0,由零點(diǎn)存在性定理知f(x)在4c)上存在唯一一個(gè)零點(diǎn)又xf(x)在)(f(x)不存在絕對(duì)值不大于1的0零點(diǎn),與題設(shè)矛盾.綜上,f(x)所有零點(diǎn)的絕對(duì)值都不大于1..(202019)已知關(guān)于x的函數(shù)yf(x),yg(x)與h(x)b(k,bR)在區(qū)間Df(x)h(x)g(x).f(x)xf(x)x22x,g(x)x2x,D(,)h(x)的表達(dá)式;2若若若2x1g(x)kxh(x)kD(0,)的取值范圍;k,,,f(x)x42x2g(x)4x28,h(x)t,3t)xt4t2(0t2),D[,n][2,2],求證:nm7.【解析】由f(x)g(x)得x0.2x2f(0)g(0)2,∴函數(shù)h(x)的圖像為過原點(diǎn),斜率為2的直又f(x)2x2,g(x)線,∴h(x)2x.經(jīng)檢驗(yàn):h(x)2x符合題意.1x1(2)h(x)g(x)k(x1x),設(shè)(x)x1x,則(x)1,xx(x)0,∴當(dāng)h(x)g(x)0時(shí),k0由(x)f(x)(x)x2x1(k)x(kxk)02當(dāng)xk10時(shí),m(x)在)上遞增,∴m(x)m(0)1k0k1.當(dāng)k10時(shí),0(k綜上,k[0,3].2k0,(kk0,1k3.f(x)x42x2f(x)4x34x4x(xx∵yf(x)的圖像在y(40204x)(xx)(x0,xx0342)(40340)x304202,00可見直線yh(x)yf(x)的圖像在xt(0t2)處的切線,yf(x)的圖像可知,當(dāng)f(x)h(x)D上恒成立時(shí),t2],g(x)h(x)0得4x2t3t)xt4t80,2t4t28設(shè)方程g(x)h(x)0的兩根為1,xxxxt3txx,,21212424xxt3t)2t4t2t3,6t4t28,∴xx(xx)121212令t22],由圖像可知nmxx328.12設(shè))328)22]()0,()單調(diào)遞減,∴()7,故(nm)1x2()7,即nm7.f(x)xkx(kR),f(x)為f(x)的導(dǎo)函數(shù).3.(202020)已知函數(shù)(Ⅰ)當(dāng)k6yf(x)f處的切線方程;(i)求曲線求函數(shù)9的單調(diào)區(qū)間和極值;g(x)f(x)f(x)xfxfx12fxfx當(dāng)k?3時(shí),求證:對(duì)任意的1,x)xx12.212xx122【答案】(Ⅰ)(i)y9x8;g(x)的極小值為g1,無極大值;(Ⅱ)證明見解析.【思路導(dǎo)引】(Ⅰ)(i)首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)數(shù)的幾何意義求解切線方程即可;首先求得的解析式,然后利用導(dǎo)函數(shù)與原函數(shù)的關(guān)系討論函數(shù)的單調(diào)性和函數(shù)的極值即可;gx12tt,將原問題轉(zhuǎn)化為與有關(guān)的函數(shù),然后構(gòu)造新函數(shù),利用新首先確定導(dǎo)函數(shù)的解析式,然后令函數(shù)的性質(zhì)即可證得題中的結(jié)論.6【解析】(Ⅰ)當(dāng)fxx36lnx,f'x3x.可得,,f11f'192xyfxf1y19x1y9x8.處的切線方程為33xx326lnx,x.gx依題意,x63x32(xg'x3x26xg(x)從而可得,整理可得:,xx2xg'x0,解得x1.令g'x,gx當(dāng)x變化時(shí),的變化情況如下表:xx10g'xgx單調(diào)遞減極小值單調(diào)遞增g(x)的單調(diào)遞減區(qū)間為(01),單調(diào)遞增區(qū)間為(1+∞);g(x)的極小值為g(1)=1,無極大值.kxf(x)xkx3f(x)3x2證明:由.x12x,x)xxtt對(duì)任意的121212kk222xxk33xxfxfx2fxfxxx121212121212x1212111323312x3xxk1222k23t3t2t1kt2lnt.①2212t1令(x)x2ln,x).x2121xx0,當(dāng)x>1h(x)11x21由此可得在單調(diào)遞增,∴當(dāng)hth1hxt2lnt0.tx1t3t2t1t30,k3,∵∴,2113t3tt1kt2lntttt13t2lnttx32323t6lnt12②2ttt33gtg1tt6lnt1(I)(ii)可知,當(dāng)t132t3t6lnt210③ttfx2fxfx0.212xxfx由①②③可得121fxfx12fxfxk3時(shí),任意的x,x11x12.22xx122.(202022)已知1a2fxxexa,其中e=2.71828…為自然對(duì)數(shù)的底數(shù).(0)Ⅰ)證明:函數(shù)yfx在上有唯一零點(diǎn);(0)Ⅱ)記0為函數(shù)yfx在上的零點(diǎn),證明:ⅰ)a1x2(a;0ⅱ)x0f(ex)(e1)(aa.0【答案】(I)證明見解析,(II)(i)證明見解析,(ii)證明見解析.【思路導(dǎo)引】(I)先利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,再結(jié)合零點(diǎn)存在定理證明結(jié)論;(II)(i)先根據(jù)零點(diǎn)化簡(jiǎn)不等式,轉(zhuǎn)化求兩個(gè)不等式恒成立,構(gòu)造差函數(shù),利用導(dǎo)數(shù)求其單調(diào)性,根據(jù)單調(diào)性確定最值,即可證得不等式;x0先根據(jù)零點(diǎn)條件轉(zhuǎn)化:xfe)xf(xa),再根據(jù)1a2放縮,轉(zhuǎn)化為證明不等式0004(ea2(e(a,最后構(gòu)造差函數(shù),利用導(dǎo)數(shù)進(jìn)行證明.2xxfx)上單調(diào)遞增,f(x)在【解析】(I)Qf(x)eQxe()Q1af(2)e22ae4f(0)1a0,2∴由零點(diǎn)存在定理得f(x)在)上有唯一零點(diǎn);(II)(i)f(x)eQxxa0,000a1x2(aex1xx2ex,0x00000x2g(x)exx1x2(0x2),h(x)ex1(0x2),x令2hxexhxx一方面:()1(h(x)e10x,11h(x)hh(x)在單調(diào)遞增,h(x)h0,x2exx12(exxx2,2另一方面:Q1a2a11,x1a1x0成立,g(x)e0因此只需證明當(dāng)0x1時(shí)xx1x02,∵g(x)ex12xg(x,g(x)e20x2x11xxg(x)0,1g(x)0當(dāng)∴1,g(x)max{g(0),gQg(0)ge3g(x)0g(x)在單調(diào)遞減,g(x)g0,exx1x2,x10ex2exa.xa1x0綜上,0000(ii)t(x)xf(e)xf(xa)x[(exa(e,xa0a000000aaQt(x)2(exa(e0,a1x2(a,000t(0)t(aae,a2(a,t(x0)(e1)(a2(aa1(e只需證明2(aa1(e2)(ea2,即只需證明4(e令s(a)4(e(e(aa,aa1aeaeaaaae,a∵1a2,∴aea2).a(chǎn)a2(e(a,2a22aa(e2e(e(e0,2則s(a)e(e(eaa.s(a)s4(e204(ea2(e2(axfex006.(2015新課標(biāo)Ⅰ理12)設(shè)函數(shù)()fxex(2xa,其中a1,若存在唯一的整數(shù)x,使得0f(0)0a的取值范圍是333B.[,)e433.[,)2e43A.[D.[e2e【答案】D0(2e0xaxag(x)ex(2x,h(x)axa,0011g(x)ex(2xg(x)在(,)(,)g(x)與h(x)的由22a1h(0)g(0)h(≤g(3大致圖象如圖所示,故3,所以≤a<1.2e2a≤e7.(2015新課標(biāo)Ⅱ理12)設(shè)函數(shù)f(x)是奇函數(shù)f(x)(xR)的導(dǎo)函數(shù),f(0,當(dāng)x0時(shí),x)f(x)0,則使得f(x)0成立的x的取值范圍是,1.A..,1D.【答案】Af(x)【解析】令h(x)=,因?yàn)閒(x)為奇函數(shù),所以h(x)為偶函數(shù),由于x(x)f(x)h(x)x>0x)f(x)0,所以h(x)在)x2上單調(diào)遞減,根據(jù)對(duì)稱性h(x)在(,0)上單調(diào)遞增,又f(0,f=0,數(shù)形結(jié)合可知,使得f(x)>0成立的x的取值范圍是,1..(2018全國(guó)卷3理21)已知函數(shù)fx2x21x2x.若a0,證明:當(dāng)1x0fx0x0fx0;若x0是fx的極大值點(diǎn),求.a(chǎn)【解析】若a0f(x)(2x)x)2x(x,11x1x12ln(x1.∴f(x)x)(2x)1x1令(x)ln(x1,11x2∴h(x).x1(x(x2x0h(x)0,h(x)在)上單調(diào)遞增,當(dāng)1x0h(x)0,h(x)在(0)上單調(diào)遞減.∴h(x)h(0)ln1110,∴f(x)0恒成立,∴f(x)在()上單調(diào)遞增,又f(0)2ln100,1x0f(x)0x0f(x)0.121,(2)f(x)(2xx11(x210,f(x)aln(xx1(x22a(x2ln(x(2axx22ax0,2a(x2ln(xln(x3x24axx0,4x]x.[2(x22設(shè)h(x)2(x2x)3x24x,∴h(x)4(xx)2(x6x4,h(0)60,h(0)0,x0鄰域內(nèi),x0h(x)0,x0h(x)0.x1x0ax0a,由洛必達(dá)法則得a,2(x22x)3x224x4x6x1,由洛必達(dá)法則得a,2(xx)3x61綜上所述,a.6x12.(2018全國(guó)卷3文21)已知函數(shù)f(x).exyf(x)求曲線處的切線方程;證明:當(dāng)a1f(x)e0.(2ex(e2xexx22x12f(x)【解析】由題意:fx得,exx)2ex22yfx1處的切線斜率為2y(2(x0)2xy10;∴f1x1ax2x10恒成立;令g(x)ex1ax2證明:由題意:原不等式等價(jià)于:ex1,g(x)ex121,g(x)ex12aa1g(x)0g(x)在(,)上單調(diào)∴,0012010e20101遞增,∴g(x)在()上存在唯一x使g(x)0e0g(x)在(,x)上單調(diào)遞減,在(x,)上單調(diào)遞增,∴g(x)g(x).000g(x)e010210x22a)x2(ax02),又000011111e1,∴x0g()ea1,∵a10ea,∴g(x)0,得證.0aa綜上所述:當(dāng)a1fxe0.1f(x)xax.(2018全國(guó)卷1理已知函數(shù).xf(x)的單調(diào)性;fxfx若f(x)存在兩個(gè)極值點(diǎn)x,x,證明:12a2.1212xx1xax12f(x)xaxfx)2a20,fx)0(1),xx2f(x)在)上為單調(diào)遞增.a(chǎn)a24aa2440a2或a2,此時(shí)方程x10兩根為x2,2122a2時(shí),此時(shí)兩根均為負(fù),∴fx)在)上單調(diào)遞減.當(dāng)a20,此時(shí)f(x)在aa24)f(x)aa24aa24)f(x)aa2在(,在(,)2222aa24),f(x))在上單調(diào)遞減;a2f(x)上單調(diào)遞減.∴綜上可得,a2在2aa24aa24aa24)上單調(diào)遞增.,)上單調(diào)遞減,f(x)在(,(2221x,xa2xx,xx101xx1由(1)可得,x210得,,∴,1212122211f(x)f(x)xax(xax)2(xx)axx).∴2121122211x1x2f(x)f(x)1xf(x)f(x)1x122a212a2成立,即要證21,要證成立,∴1212121212xx1122ln2221x2,0(x021212ln2201)x(2即要證2121g(x)在)g(x)g01g(x)2lnxx(x令12xf(x)f(x)12a2成立.成立,即12(2018全國(guó)卷1文已知函數(shù)fxaexx.1設(shè)x2是fx的極值點(diǎn),求a,并求fx的單調(diào)區(qū)間;1證明:當(dāng)a≥fx≥0.e1f(x)定義域?yàn)?f(x)aex【解析】(1),.x11x2是f(x)極值點(diǎn),∴ae20a.f(2)0∵22e2∵ex在)上增,a0在)上增.x1)f(x)在)f(2)0上增.又,又在上減,∴xx2)f(x)0f(x),x(2,)f(x)0f(x)減;當(dāng),1綜上,a,單調(diào)增區(qū)間為(2,),單調(diào)減區(qū)間為.2e211ex0,∴當(dāng)aaexexex1∵,eef(x)xx1exx1.1∴令g(x)ex1x1,x).11g(x)ex1g(x)在)1ge0,,同(1)上增,又x1xg(x)0g(x),x)g(x)0g(x)減;當(dāng),g(x)g11ln111010∴,1af(x)g(x)0.ef(x)xxf(x)≥0.2.(2017新課標(biāo)Ⅱ理已知函數(shù)求a;e2f(x)22.證明:f(x)存在唯一的極大值點(diǎn)0【解析】f(x)的定義域?yàn)?.0設(shè)g(x)axaxf(x)(x),f(x)≥0等價(jià)于g(x)≥0.1g0,g(x)≥0g0g(x)a,ga1a1.x1若a1g(x)10x1g(x)0,g(x)x1時(shí),g(x)0,g(x)單x調(diào)遞增.所以x1是g(x)的極小值點(diǎn),故g(x)≥g0.綜上,a1.f(x)x2xxx,f(x)2x2x.由(1)知1設(shè)h(x)2x2xh(x)2.x1111當(dāng)x)時(shí),h(x)0x(,)時(shí),h(x)0h(x)在)(,)單調(diào)2222遞增.11212h(e2)0,h()0,h0,所以h(x)在)有唯一零點(diǎn)x,在[,)有唯一零點(diǎn)1,且當(dāng)又02xx)h(x)0x(xh(x)0x)h(x)0.000f(x)h(x),所以xx是f(x)的唯一極大值點(diǎn).0由f(x)0得x2(0f(x)xx).000014由xf(x).00x0是f(x)在的最大值點(diǎn),由e1,f(e)0得1f(x)f(e1)e2.0e2f(x)22.0f(x)x(2ax.2.(2017新課標(biāo)Ⅲ文已知函數(shù)f(x)的單調(diào)性;3當(dāng)a0時(shí),證明f(x)≤2.4a1(xax【解析】f(x)的定義域?yàn)?,f(x)2ax2a1.xx若a≥0,則當(dāng)x)f(x)0f(x)在)單調(diào)遞增.111若a0,則當(dāng)x(0,)f(x)0x(,)f(x)0f(x)在(0,)2a2a2a1遞增,在(,)單調(diào)遞減.2a1由(1)知,當(dāng)a0f(x)在x取得最大值,最大值為2a111f()ln()1.2a2a4a3113f(x)≤2等價(jià)于ln()1≤2,4a2a4a4a11即ln()2a2a1≤0.1設(shè)g(x)xx1g(x)1.x當(dāng)xg(x)0x)g(x)0.所以g(x)在單調(diào)遞增,在)單調(diào)遞減.故當(dāng)x1g(x)取得最大值,最大值為g0.所以當(dāng)x0g(x)≤0.從而當(dāng)a0時(shí),113ln()1≤0f(x)≤2.2a2a4a.(2016卷)設(shè)函數(shù)f(x)xx1.Ⅰ)f(x)的單調(diào)性;x1Ⅱ)證明當(dāng)x)時(shí),1x;x(III)設(shè)c1,證明當(dāng)x時(shí),1(cxcx.1【解析】(Ⅰ)由題設(shè),f(x)的定義域?yàn)?,f(x)1f(x)0x10x1時(shí),xf(x)0,f(x)單調(diào)遞增;當(dāng)x1f(x)0,f(x)單調(diào)遞減.Ⅱ)由()f(x)在x1處取得最大值,最大值為f0.所以當(dāng)x1xx1.11x1xx)xx1,1,即1xxx.Ⅲ)由題設(shè)c1g(x)1(cxcxg(x)c1cxlnc,c1cc令g(x)0,解得x.0當(dāng)xxg(x)0,g(x)單調(diào)遞增;當(dāng)xxg(x)0,g(x)單調(diào)遞減.00c1c()知,1c001g(0)g0,0x1g(x)0.所以當(dāng)x時(shí),1(cxcx.2xax..(20151文21)設(shè)函數(shù)fxe(I)fx的導(dǎo)函數(shù)fx的零點(diǎn)的個(gè)數(shù);2(II)證明:當(dāng)a0時(shí)fx2aa.a(chǎn)ax【解析】Ⅰ)f(x)的定義域?yàn)?0+),f(x)=2e2xx0.當(dāng)a≤0時(shí),f(x)0,f(x)沒有零點(diǎn);a當(dāng)a0時(shí),因?yàn)閑2x單調(diào)遞增,單調(diào)遞增,所以f(x)在(0+)單調(diào)遞增.又f(x)0,當(dāng)b滿足xa10b且bfb)0,故當(dāng)a0f(x)存在唯一零點(diǎn).44Ⅱ)由(),可設(shè)f(x)在(0+)的唯一零點(diǎn)為xx(0,x)f(x)0;00當(dāng)x(x)f(x)0.0故f(x)在(0,x)單調(diào)遞減,在(x)單調(diào)遞增,00所以當(dāng)xxf(x)取得最小值,最小值為f(x).00aa222e20=0,所以f(0)=2axa≥2aa.0020aa2a0f(x)≥2aa.a(chǎn)bex1x16.(2013全國(guó)卷1理12)設(shè)函數(shù)()fxxx,曲線yf(x)在點(diǎn)(1,f處的切線為ye(x2.(Ⅰ)求a,b;Ⅱ)證明:f(x)1.a(chǎn)xbbxxx1x1【解析】Ⅰ)f(x)的定義域?yàn)?,f(x)aexexe2exab2……………6分由題意可得ffe2ex12Ⅱ)由()f(x)exx,從而f(x)1等價(jià)于xxxexxe1e1e設(shè)函數(shù)g(x)xxg(x)xxxg(x)0x,g(x)0,1ee1故g(x)在單調(diào)遞減,在,單調(diào)遞增,從而g(x)在的最小值為11g().……………8分ee2hxxex(x)ex1xx時(shí),h(x)0xh(x)0,設(shè)函數(shù)()e1單調(diào)遞減,從而h(x)在的最大值為h故h(x)在單調(diào)遞增,在.e綜上:當(dāng)x0g(x)h(x)f(x)1.xm.……………12分.(2013全國(guó)卷2理已知函數(shù)f(x)=ex)Ⅰ)設(shè)x是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;Ⅱ)當(dāng)m2時(shí),證明:f(x)0.1【解析】Ⅰ)f(x)=ex,xm1x是f(x)的極值點(diǎn),∴f(0)=1=0,解得m=1,m1x11x,∴f(x)=ex∴f(x)的定義域?yàn)椋?+),f(x)=e0,(x2∴f(x)(-,+)上是增函數(shù),x(-10)f(x)<f(0)=0x(0∞)f(x)>f(0)=0,∴f(x)的增區(qū)間為,∞),減區(qū)間為(-10).Ⅱ)當(dāng)m2,x(m,∞)ln(xm)≤ln(x2),故只需證明當(dāng)mf(x)0,1當(dāng)m時(shí),函數(shù)f(x)=ex(-2,)單調(diào)遞增.x2又f(0,f(0)>0f(x)在(-2+)有唯一實(shí)根xx∈(-10),00當(dāng)x(-2,x)f(x)0x(x,+)f(x)0,00x=0f(x)取得最小值.1000,由f(x)得e=002(021∴f(x)≥f(0)=0=0,0202綜上,當(dāng)m2f(x)0.a(chǎn)xbx1x18.全國(guó)課標(biāo)文21)已知函數(shù)f(x)=,曲線y=f(x)在點(diǎn)(1,f)處的切線方程為x2y30.Ⅰ)求a,b的值;xx1Ⅱ)證明:當(dāng)x>0x1f(x)>.x1()bx【解析】(Ⅰ)fx)(x2x2f1由于直線x2y30的斜率為,且過點(diǎn)1即f,22ba1,b1.a(chǎn)1b,22xx1x1由(Ⅰ)知f(x),所以xx11x1(2x)x2f(x)2xx12考慮函數(shù)h(x)2lnx(x0)(xx2x(x2222h(x)xx2x2所以當(dāng)x1h(x)故11x當(dāng)x(h(x)當(dāng)x)h(x)h(x)21h(x)1x2xx1xx1從而當(dāng)x且xf(x)0,即f(x)..(2010全國(guó)課標(biāo)文設(shè)函數(shù)f(x)=xe1ax2.x1Ⅰ)若a=f(x)的單調(diào)區(qū)間;2Ⅱ)若x0時(shí)f(x)0a的取值范圍11【解析】(Ⅰ)a時(shí),f(x)x(exx2,fx)ex1xxx(exx,122時(shí)fx)xfx)0xfx)0f(x)在,單調(diào)增加,在,0)單調(diào)減少.Ⅱ)f(x)xx(a1ax).令g(x)xagx)ea.1x若a1xgx)g(x)g(0)0x0時(shí)g(x)0f(x)0.若ax0,lnagx),g(x)g(0)0x0,lna時(shí)g(x)<0,即f(x)<.綜合得a的取值范圍為,1.f(x)2ax,其中aR..(2016年四川)設(shè)函數(shù)(I)f(x)的單調(diào)性;1(II)確定a的所有可能取值,使得f(x)在區(qū)間)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底e1xx).121,x0【解析】(I)由題意,f'xxxa?02ax2f'x0,10,fx在上單調(diào)遞減.11f'x0;a0時(shí),令f(x)0xx(0,)2a2a1當(dāng)x(,)f'x0.2a11在fx(,)上單調(diào)遞增.故)上單調(diào)遞減,在2a2ag(x)11(II)令,s(x)ex1xs(x)ex11.而當(dāng)x1xex1,所以S0s(x)0,s(x)0s(x))在區(qū)間內(nèi)單調(diào)遞增.又由從而當(dāng)x1g(x)0.當(dāng)a?0,x1f(x)a(xx0.2f(x)g(x)在區(qū)間)內(nèi)恒成立時(shí),必有a0.121當(dāng)0a1.2a11f()f0g()0,(I)有2af(x)g(x)在區(qū)間)2a所以此時(shí)內(nèi)不恒成立.1當(dāng)a?時(shí),令h(x)f(x)g(x)(x?.211111當(dāng)x1h(x)2exx2xx2xxxx32x1x22x10,x2x2因此,h(x)在區(qū)間)內(nèi)單調(diào)遞增.又h0,所以當(dāng)x1h(x)f(x)g(x)0f(x)g(x)恒成立.1綜上,a[,)2f(x)ln(xa(xx),其中aR.2.(2015山東)設(shè)函數(shù)Ⅰ)討論函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并說明理由;Ⅱ)若x0,f(x)≥0成立,求a的取值范圍.(Ⅰ)由題意知f(x)的定義域?yàn)?,1x122a1x1f(x)a(2x,g(x)22a1,x(),令當(dāng)a0g(x)1,f(x)0,函數(shù)f(x)在()單調(diào)遞增,無極值點(diǎn);當(dāng)a0a2aaaa)(9,80a0,g(x)0,9f(x)0,函數(shù)f(x)在()單調(diào)遞增,無極值點(diǎn);8a0,9a10的兩根為x,x(xx),設(shè)方程2121221xx,12211x,x,12441由g(10,可得1x,14所以當(dāng)x(x)g(x)f(x)0,函數(shù)f(x)單調(diào)遞增;1當(dāng)x(x,x)g(x)0,f(x)0f(x)單調(diào)遞減;12x(x2,)g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞增;當(dāng)因此函數(shù)有兩個(gè)極值點(diǎn).當(dāng)a00,由g(10,可得11,當(dāng)x(x)g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞增;2x(x2,)g(x)0,f(x)0f(x)單調(diào)遞減;當(dāng)所以函數(shù)有一個(gè)極值點(diǎn).綜上所述:當(dāng)a0時(shí),函數(shù)f(x)有一個(gè)極值點(diǎn);當(dāng)0a時(shí),函數(shù)f(x)無極值點(diǎn);當(dāng)a時(shí),函8899數(shù)f(x)有兩個(gè)極值點(diǎn).(II)(I)8當(dāng)0a時(shí),函數(shù)f(x)在(0,)上單調(diào)遞增,9f(0)0,所以x(0,)f(x)0,符合題意;8ag(0)020,1時(shí),由當(dāng)9f(x)在(0,)上單調(diào)遞增,又f(0)0,所以x(0,)f(x)0,符合題意;當(dāng)a1時(shí),由g(0)0,可得20,xx)時(shí),函數(shù)f(x)單調(diào)遞減;2f(0)0,所以x2)f(x)0,不合題意;當(dāng)a0時(shí),設(shè)h(x)xx,1xx(0,)h(x)10x1x1h(x)在(0,)上單調(diào)遞增.因此當(dāng)x(0,)h(x)h(0)0xx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論