江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題_第1頁
江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題_第2頁
江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題_第3頁
江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題_第4頁
江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南京市燕子磯中學(xué)2022-2023學(xué)年高三下學(xué)期5月考前適應(yīng)性考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.92.已知集合,,則()A. B. C. D.3.設(shè)不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標滿足不等式的概率為A. B.C. D.4.若復(fù)數(shù)()在復(fù)平面內(nèi)的對應(yīng)點在直線上,則等于()A. B. C. D.5.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.6.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.7.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.8.向量,,且,則()A. B. C. D.9.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.310.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.411.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.12.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.14.已知的展開式中第項與第項的二項式系數(shù)相等,則__________.15.某公園劃船收費標準如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.16.若變量,滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,動點滿足直線與直線的斜率之積為,設(shè)點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.18.(12分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設(shè)P是橢圓上的動點,求面積的最大值.19.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.20.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.21.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,

函數(shù)的周期為3,

∵當時,,

令,則,解得或1,

又∵函數(shù)是定義域為的奇函數(shù),

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數(shù)是周期為3的周期函數(shù),

∴方程=0在區(qū)間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.2、D【解析】

先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學(xué)生的基本運算能力,是一道容易題.3、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.4、C【解析】

由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.5、D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結(jié)合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點坐標公式是解答的關(guān)鍵,著重考查了推理與運算能力.6、C【解析】

試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應(yīng)用點評:本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題7、B【解析】

求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.8、D【解析】

根據(jù)向量平行的坐標運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.9、A【解析】,故,故選A.10、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.11、D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.12、B【解析】

首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應(yīng)用能力和計算能力,是基礎(chǔ)題.14、【解析】

根據(jù)的展開式中第項與第項的二項式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因為的展開式中第項與第項的二項式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數(shù),還考查了運算求解的能力,屬于基礎(chǔ)題.15、36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結(jié)果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實際應(yīng)用問題,屬于基礎(chǔ)題.16、【解析】

根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設(shè)動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,設(shè),,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線的方程聯(lián)立,得即設(shè),,則,將直線:與聯(lián)立,得∴∴設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設(shè)而不求”的思想方法,即設(shè)交點坐標為,設(shè)直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結(jié)論,本題屬于難題,對學(xué)生的邏輯推理、運算求解能力有一定的要求.18、(1),,;(2).【解析】

(1)利用公式即可求得曲線的極坐標方程;聯(lián)立直線和曲線的極坐標方程,即可求得交點坐標;(2)設(shè)出點坐標的參數(shù)形式,將問題轉(zhuǎn)化為求三角函數(shù)最值的問題即可求得.【詳解】(1)曲線的極坐標方程:聯(lián)立,得,又因為都滿足兩方程,故兩曲線的交點為,.(2)易知,直線.設(shè)點,則點到直線的距離(其中).面積的最大值為.【點睛】本題考查極坐標方程和直角坐標方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問題,屬綜合中檔題.19、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設(shè)交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.20、(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結(jié)PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平和空間想象轉(zhuǎn)化能力.(2)證明空間位置關(guān)系,一般有幾何法和向量法,本題利用幾何法比較方便.21、(1)(2)【解析】

(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論