![2023年高考數(shù)學(xué)知識點歸納_第1頁](http://file4.renrendoc.com/view/c91294fb97798d0e41bcb1b936932823/c91294fb97798d0e41bcb1b9369328231.gif)
![2023年高考數(shù)學(xué)知識點歸納_第2頁](http://file4.renrendoc.com/view/c91294fb97798d0e41bcb1b936932823/c91294fb97798d0e41bcb1b9369328232.gif)
![2023年高考數(shù)學(xué)知識點歸納_第3頁](http://file4.renrendoc.com/view/c91294fb97798d0e41bcb1b936932823/c91294fb97798d0e41bcb1b9369328233.gif)
![2023年高考數(shù)學(xué)知識點歸納_第4頁](http://file4.renrendoc.com/view/c91294fb97798d0e41bcb1b936932823/c91294fb97798d0e41bcb1b9369328234.gif)
![2023年高考數(shù)學(xué)知識點歸納_第5頁](http://file4.renrendoc.com/view/c91294fb97798d0e41bcb1b936932823/c91294fb97798d0e41bcb1b9369328235.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)知識點歸納(文檔)
【寄語】高考數(shù)學(xué)學(xué)問點歸納為的會員投稿推舉,但愿對你的學(xué)習(xí)工作帶來幫忙。
高三學(xué)生很快就會面臨連續(xù)學(xué)業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清晰了?這對于沒有社會閱歷的學(xué)生來說,無疑是個困難的想選擇。下面給大家共享一些高考數(shù)學(xué)學(xué)問點歸納,盼望能夠幫忙大家,歡送閱讀!
高考數(shù)學(xué)學(xué)問點1
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面對量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),由于這是整個高中階段中最核心的局部,這局部里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;其次是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面對量和三角函數(shù)
對于這局部學(xué)問重點考察三個方面:是劃減與求值,第一,重點把握公式和五組根本公式;其次,把握三角函數(shù)的圖像和性質(zhì),這里重點把握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
五、概率和統(tǒng)計
概率和統(tǒng)計主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要把握幾個方面:……等可能的概率;……大事;獨立大事和獨立重復(fù)大事發(fā)生的概率。
六、解析幾何
這局部內(nèi)容說起來簡單做起來難,需要把握幾類問題,第一類直線和曲線的位置關(guān)系,要把握它的通法;其次類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清楚的答案,但需要要把握比擬好的算法,來提高做題的精確度。
七、壓軸題
同學(xué)們在最終的備考復(fù)習(xí)中,還應(yīng)當(dāng)把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平常多做些壓軸題真題,爭取能解題就解題,能思索就思索。
高考數(shù)學(xué)直線方程學(xué)問點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來推斷兩條直線是否相互平行或相互垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考數(shù)學(xué)學(xué)問點2
一、求動點的軌跡方程的根本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:假如能夠確定動點的軌跡滿意某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿意的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先查找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
-直譯法:求動點軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所滿意的關(guān)系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高考數(shù)學(xué)學(xué)問點3
第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面對量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;其次是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
其次、平面對量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點把握公式,重點把握五組根本公式。其次,是三角函數(shù)的圖像和性質(zhì),這里重點把握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比擬小。
第三、數(shù)列。
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四、空間向量和立體幾何,在里面重點考察兩個方面:一個是證明;一個是計算。
第五、概率和統(tǒng)計。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,固然應(yīng)當(dāng)把握下面幾個方面,第一……等可能的概率,其次………大事,第三是獨立大事,還有獨立重復(fù)大事發(fā)生的概率。
第六、解析幾何。
這是我們比擬頭疼的問題,是整個試卷里難度比擬大,計算量的題,固然這一類題,我總結(jié)下面五類??嫉念}型,包括:
第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)當(dāng)把握它的通法;
其次類我們所講的動點問題;
第三類是弦長問題;
第四類是對稱問題,這也是2023年高考已經(jīng)考過的一點;
第五類重點問題,這類題時往往覺得有思路,但是沒有答案,
固然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的緣由,往往有這個緣由,我們所選方法不是很恰當(dāng),因此,在這一章里我們要把握比擬好的算法,來提高我們做題的精確度,這是我們所講的第六大板塊。
第七、押軸題。
考生在備考復(fù)習(xí)時,應(yīng)當(dāng)重點不等式計算的方法,雖然說難度比擬大,我建議考生,實行分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高考數(shù)學(xué)學(xué)問點4
(一)導(dǎo)數(shù)第肯定義
設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);假如△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f“(x0),即導(dǎo)數(shù)第肯定義
(二)導(dǎo)數(shù)其次定義
設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y=f(x)-f(x0);假如△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f“(x0),即導(dǎo)數(shù)其次定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
假如函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y“,f“(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)討論多項式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高考數(shù)學(xué)學(xué)問點5
一、排列
1定義
(1)從n個不同元素中取出m個元素,根據(jù)肯定的挨次排成一列,叫做從n個不同元素中取出m個元素的一排列。
(2)從n個不同元素中取出m個元素的全部排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為Amn.
2排列數(shù)的公式與性質(zhì)
(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:當(dāng)m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1
規(guī)定:0!=1
二、組合
1定義
(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合
(2)從n個不同元素中取出m個元素的全部組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號Cmn表示。
2比擬與鑒別
由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按肯定挨次排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的挨次并成一組這一個步驟。
排列與組合的區(qū)分在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的挨次有關(guān)。因此,所給問題是否與取出元素的挨次有關(guān),是推斷這一問題是排列問題還是組合問題的理論依據(jù)。
三、排列組合與二項式定理學(xué)問點
1.計數(shù)原理學(xué)問點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選后排,先分再排
排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿意特別元素的要求,再考慮其他元素.以位置為主考慮,即先滿意特別位置的要求,再考慮其他位置.
捆綁法(集團(tuán)元素法,把某些必需在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應(yīng)用問題時,應(yīng)留意:
(1)把詳細(xì)問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;
(3)分析題目條件,避開“選取”時重復(fù)和遺漏;
(4)列出式子計算和作答.
常常運用的數(shù)學(xué)思想是:
①分類爭論思想;②轉(zhuǎn)化思想;③對稱思想.
4.二項式定理學(xué)問點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特殊地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m
二項式系數(shù)在中間。(要留意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)
全部二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化場館停車場改造協(xié)議
- 主題餐廳裝修分包合同模板
- 4S店裝修補(bǔ)貼合同協(xié)議
- 寵物店裝修合同標(biāo)準(zhǔn)格式
- 展覽館裝修終止合同協(xié)議書
- 游輪衛(wèi)生間裝修合同標(biāo)準(zhǔn)
- 工程項目材料運輸合同
- 廣告?zhèn)髅骄娱g服務(wù)協(xié)議
- 無人機(jī)領(lǐng)域股權(quán)居間合同
- 達(dá)州市聯(lián)考高一數(shù)學(xué)試卷
- GB/T 8014.1-2005鋁及鋁合金陽極氧化氧化膜厚度的測量方法第1部分:測量原則
- 股票基礎(chǔ)知識(入市必讀)-PPT
- eNSP簡介及操作課件
- 公文與公文寫作課件
- 運動技能學(xué)習(xí)與控制課件第七章運動技能的協(xié)調(diào)控制
- 節(jié)后復(fù)工吊籃驗收表格
- 基于振動信號的齒輪故障診斷方法研究
- 醫(yī)療器械分類目錄2002版
- DB11_T1713-2020 城市綜合管廊工程資料管理規(guī)程
- 氣管套管滑脫急救知識分享
- 壓縮空氣系統(tǒng)管道阻力計算
評論
0/150
提交評論