版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第第頁八年級《一次函數(shù)》教學(xué)設(shè)計優(yōu)秀6篇【導(dǎo)語】:優(yōu)秀的一次函數(shù)教案在你眼前,你能錯過嗎?以下內(nèi)容是本文范文為您帶來的6篇《八年級《一次函數(shù)》教學(xué)設(shè)計》,希望能為您的思路提供一些參考。
一次函數(shù)教案篇一
教學(xué)目標(biāo)
1.知識與技能
能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實生活中的問題,會建構(gòu)函數(shù)“模型”.
2.過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維.
3.情感、態(tài)度與價值觀
培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:一次函數(shù)的應(yīng)用.
2.難點:一次函數(shù)的應(yīng)用.
3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.
教學(xué)方法
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用.
教學(xué)過程
一、范例點擊,應(yīng)用所學(xué)
例5小芳以米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象.
y=
例6A城有肥料噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?
解:設(shè)總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(-x)噸.B城運往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).
由圖象可看出:當(dāng)x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元.
拓展:若A城有肥料300噸,B城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?
二、隨堂練習(xí),鞏固深化
課本P119練習(xí).
三、課堂,發(fā)展?jié)撃?/p>
由學(xué)生自我本節(jié)課的表現(xiàn).
四、布置作業(yè),專題突破
課本P120習(xí)題14.2第9,10,11題.
板書設(shè)計
14.2.2一次函數(shù)(4)
1、一次函數(shù)的應(yīng)用例:
練習(xí):
一次函數(shù)教案篇二
一、教材分析
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的。
二、學(xué)情分析
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決。
三、目標(biāo)分析
1、教學(xué)目標(biāo)
知識與技能目標(biāo)
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法。
過程與方法目標(biāo)
(1)教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2)通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。
(3)情感與態(tài)度目標(biāo)
(1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力。
2、教學(xué)重點
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系。
3、教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識。
四、教法學(xué)法
1、教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合。
2、課前準(zhǔn)備
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
五、教學(xué)過程
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置。
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y=相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系。
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識。
前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系。順其自然進(jìn)入下一環(huán)節(jié)。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:1.解方程組
2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像。
3、方程組的解和這兩個函數(shù)的圖像的交點坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
(2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標(biāo)打下基礎(chǔ)。
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力。
第三環(huán)節(jié)典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標(biāo)是。
意圖:設(shè)計例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解。通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理。這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊。
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。
第四環(huán)節(jié)反饋練習(xí)
內(nèi)容:1.已知一次函數(shù)與的圖像的交點為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點A(2,0),且與軸分別交于B,C兩點,則的面積為()。
(A)4(B)5(C)6(D)7
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?
意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況。
效果:加深了兩條直線交點的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性。
第五環(huán)節(jié)課堂小結(jié)
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1、二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。
2、方程組和對應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
(2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
3、解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用。
第六環(huán)節(jié)作業(yè)布置
習(xí)題7.7
附:板書設(shè)計
六、教學(xué)反思
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解。因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題。
一次函數(shù)的概念優(yōu)秀教學(xué)設(shè)計篇三
一.教材分析
函數(shù)是數(shù)學(xué)中最重要的概念之一,且貫穿在中學(xué)數(shù)學(xué)的始終,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對函數(shù)概念理解的程度會直接影響數(shù)學(xué)其它知識的學(xué)習(xí),結(jié)合教學(xué)課程標(biāo)準(zhǔn)與學(xué)生的認(rèn)知水平,函數(shù)的第一課應(yīng)以函數(shù)概念的理解為中心進(jìn)行教學(xué)。
二、學(xué)情分析
從學(xué)生知識層面看:學(xué)生在初中初步探討了函數(shù)的相關(guān)知識,通過高一“集合”的學(xué)習(xí),對集合思想的認(rèn)識也日漸提高,為重新定義函數(shù)提供了知識保證。
從學(xué)生能力層面看:通過以前的學(xué)習(xí),學(xué)生已有一定的分析、推理和概括能力,初步具備了學(xué)習(xí)函數(shù)概念的基本能力。
三、教學(xué)目標(biāo)
知識與技能:讓學(xué)生理解構(gòu)成函數(shù)的三要素、函數(shù)概念的本質(zhì)、抽象的函數(shù)符號f(x)的意義。
過程與方法:在教師設(shè)置的問題引導(dǎo)下,學(xué)生通過自主學(xué)習(xí)交流,反饋精講、當(dāng)堂訓(xùn)練,經(jīng)歷函數(shù)概念的形成過程,滲透歸納推理的數(shù)學(xué)思想,發(fā)展學(xué)生的抽象思維能力。
情感態(tài)度價值觀:在學(xué)習(xí)過程中,學(xué)會數(shù)學(xué)表達(dá)和交流,體驗獲得成功的樂趣,建立自信心。
四、教學(xué)難重點重點:理解函數(shù)的概念;
難點:概念的形成過程及理解函數(shù)符號y=f(x)的含義。
[重難點確立的依據(jù)]:函數(shù)的概念抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識的能力也比較高,對于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在和函數(shù)的概念及函數(shù)符號的理解與運用上。
從多個角度創(chuàng)設(shè)多個問題情境,組織學(xué)生圍繞重點自主思考,讓學(xué)生自主、合作探索,體會函數(shù)概念的本質(zhì)從而突破難點。
五、教法與學(xué)法選擇
充分尊重學(xué)生的主體地位,讓學(xué)生在教師設(shè)置的問題的引導(dǎo)下、通過自主學(xué)習(xí)等環(huán)節(jié)自主構(gòu)建知識體系,自主發(fā)展數(shù)學(xué)思維,教師采用問題教學(xué)法、探究教學(xué)法、交流討論法等多種學(xué)習(xí)方法,充分調(diào)動學(xué)生的積極性。
六、教學(xué)過程設(shè)計引入
現(xiàn)實世界是充滿變化的,函數(shù)是描述變化規(guī)律的重要數(shù)學(xué)模型,也是數(shù)學(xué)的基本概念,也是基本思想,另外函數(shù)的概念也是不斷發(fā)展的。引出課題
問題提出
1、請回憶在初中我們學(xué)過那些函數(shù)?(學(xué)生回答老師補(bǔ)充)
2、回憶初中函數(shù)的定義是什么?一般地,設(shè)在一個變化過程中有兩個變量x、y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
知識探究一函數(shù)
給定兩個非空的數(shù)集A,B,如果按照某個對應(yīng)關(guān)系f,對于集合A中的任何一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)與之對應(yīng),那么就把對應(yīng)關(guān)系f叫做定義在集合A上的函數(shù)記作f:A→B或y=f(x),x∈A.其中,x叫做自變量,與x值相對應(yīng)的f(x)值叫做函數(shù)值。x的取值范圍稱為定義域,函數(shù)值f(x)的取值范圍稱為值域。定義理解一——y=f(x)1.x是自變量,它是法則所施加的對象。
2.f是對應(yīng)法則,它可以是解析式,可以是表格,也可以是圖像。
3.y=f(x)表示y是x的函數(shù),不是f與x的乘積。f(x)只是函數(shù)值,f才是函數(shù),()表示f對自變量x作用。
定義理解二——唯一確定
通過三個例子和學(xué)生共同總結(jié)出:
1、函數(shù)中每個x與y的對應(yīng)關(guān)系,可以是一對一,也可以是多對一,但不能是一對多,即y是唯一確定的
2.A中元素不能剩,B中元素可以剩下。
定義理解三——定義域值域
根據(jù)定義,函數(shù)是兩個數(shù)集A,B間的對應(yīng)關(guān)系
自變量的集合A叫做函數(shù)的定義域;函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域。例如:A={0,1,2},B={0,2,4,5},f:A→Bf(x)=2x
定義域為{0,1,2},值域為{0,2,4}從而共同探究出:值域是集合B的子集
函數(shù)的三要素:
定義域、對應(yīng)關(guān)系、值域;
函數(shù)的值域由函數(shù)的定義域和對應(yīng)關(guān)系所確定;定義域相同,對應(yīng)關(guān)系完全一致,則兩個函數(shù)相等。f(x)=3x+1與f(t)=3t+1是同一個函數(shù)。x2f(x)=x與f(x)=不是同一個函數(shù)。x然后和學(xué)生共同探究常見的已學(xué)函數(shù)的定義域和值域:
知識探究二區(qū)間
(設(shè)a,b為實數(shù),且a0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識:
⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。
⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合。
教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。
1、“動”———學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。
2、“探”———引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。
3、“樂”———本節(jié)課的設(shè)計力求做到與學(xué)生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學(xué)生興趣高一點,自信心強(qiáng)一點,使學(xué)生樂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年租賃合同租金支付與租賃物描述
- 2024隗蓉與科技公司關(guān)于物聯(lián)網(wǎng)設(shè)備研發(fā)的合同
- 2024版住宅小區(qū)物業(yè)經(jīng)理聘任協(xié)議版
- 2025年度除塵設(shè)備節(jié)能效果評估合同3篇
- 2024某科技公司與某大學(xué)關(guān)于科研合作的合同
- 2024版婚內(nèi)財產(chǎn)公證的協(xié)議書范本
- 二零二五年度金融信托補(bǔ)充協(xié)議3篇
- 西湖大學(xué)《人體形態(tài)與結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西安健康工程職業(yè)學(xué)院《小學(xué)語文課標(biāo)解讀與教材分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年社會福利機(jī)構(gòu)勞動合同員工保障與社保合同2篇
- 張家界喀斯特地貌
- 讓學(xué)生看見你的愛
- 銷售禮盒營銷方案
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對象登記表(樣表)
- 主管部門審核意見三篇
- 初中數(shù)學(xué)校本教材(完整版)
- 父母教育方式對幼兒社會性發(fā)展影響的研究
評論
0/150
提交評論