高考數(shù)學(xué)理試題分類匯編:圓錐曲線(含復(fù)習(xí)資料及解析)_第1頁
高考數(shù)學(xué)理試題分類匯編:圓錐曲線(含復(fù)習(xí)資料及解析)_第2頁
高考數(shù)學(xué)理試題分類匯編:圓錐曲線(含復(fù)習(xí)資料及解析)_第3頁
高考數(shù)學(xué)理試題分類匯編:圓錐曲線(含復(fù)習(xí)資料及解析)_第4頁
高考數(shù)學(xué)理試題分類匯編:圓錐曲線(含復(fù)習(xí)資料及解析)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高考數(shù)學(xué)試題分類匯編:圓錐曲線(理科)一、選擇題1、(2016年四川高考)設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線上隨意一點(diǎn),M是線段上的點(diǎn),且=2,則直線的斜率的最大值為(A)(B)(C)(D)1【答案】C2、(2016年天津高考)已知雙曲線(b>0),以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑長的圓與雙曲線的兩條漸近線相交于A、B、C、D四點(diǎn),四邊形的的面積為2b,則雙曲線的方程為()(A)(B)(C)(D)【答案】D3、(2016年全國I高考)已知方程\F(x22)–\F(y2,3m2–n)=1表示雙曲線,且該雙曲線兩焦點(diǎn)間的距離為4,則n的取值范圍是(A)(–1,3)(B)(–1\R(3))(C)(0,3)(D)(0\R(3))【答案】A4、(2016年全國I高考)以拋物線C的頂點(diǎn)為圓心的圓交C于A,B兩點(diǎn),交C的準(zhǔn)線于D,E兩點(diǎn).已知,,則C的焦點(diǎn)到準(zhǔn)線的距離為(A)2(B)4(C)6(D)8【答案】B5、(2016年全國高考)圓的圓心到直線的距離為1,則()(A)(B)(C)(D)2【答案】A6、(2016年全國高考)圓已知是雙曲線的左,右焦點(diǎn),點(diǎn)在上,與軸垂直,,則E的離心率為()(A)(B)(C)(D)2【答案】A7、(2016年全國高考)已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn)為C上一點(diǎn),且軸.過點(diǎn)A的直線l與線段交于點(diǎn)M,與y軸交于點(diǎn)E.若直線經(jīng)過的中點(diǎn),則C的離心率為(A) (B) (C) (D)【答案】A8、(2016年浙江高考)已知橢圓C1:2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點(diǎn)重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1【答案】A二、填空題1、(2016年北京高考)雙曲線(,)的漸近線為正方形的邊,所在的直線,點(diǎn)B為該雙曲線的焦點(diǎn),若正方形的邊長為2,則.【答案】22、(2016年山東高考)已知雙曲線E:(a>0,b>0),若矩形的四個(gè)頂點(diǎn)在E上,,的中點(diǎn)為E的兩個(gè)焦點(diǎn),且23,則E的離心率是.【答案】2【解析】由題意,所以,于是點(diǎn)在雙曲線上,代入方程,得,在由得的離心率為,應(yīng)填2.3、(2016年上海高考)已知平行直線,則的距離【答案】4、(2016年浙江高考)若拋物線y2=4x上的點(diǎn)M到焦點(diǎn)的距離為10,則M到y(tǒng)軸的距離是.【答案】三、解答題1、(2016年北京高考)已知橢圓C:()的離心率為,,,,的面積為1.(1)求橢圓C的方程;(2)設(shè)的橢圓上一點(diǎn),直線與軸交于點(diǎn)M,直線與軸交于點(diǎn)N.求證:為定值.【解析】⑴由已知,,又,解得∴橢圓的方程為.⑵方法一:設(shè)橢圓上一點(diǎn),則.直線:,令,得.直線:,令,得.將代入上式得故為定值.方法二:設(shè)橢圓上一點(diǎn),直線:,令,得.直線:,令,得.故為定值.2、(2016年山東高考)平面直角坐標(biāo)系中,橢圓C:

的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).(I)求橢圓C的方程;()設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段的中點(diǎn)為D,直線與過P且垂直于x軸的直線交于點(diǎn)M.(i)求證:點(diǎn)M在定直線上;()直線與y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值與取得最大值時(shí)點(diǎn)P的坐標(biāo).【解析】(Ⅰ)由離心率是,有,又拋物線的焦點(diǎn)坐標(biāo)為,所以,于是,所以橢圓的方程為.(Ⅱ)(i)設(shè)點(diǎn)坐標(biāo)為,由得,所以在點(diǎn)處的切線的斜率為,因此切線的方程為,設(shè),,將代入,得于是,,又,于是直線的方程為.聯(lián)立方程與,得的坐標(biāo)為.所以點(diǎn)在定直線上.()在切線的方程為中,令,得,即點(diǎn)的坐標(biāo)為,又,,所以;再由,得于是有.令,得當(dāng)時(shí),即時(shí),取得最大值.此時(shí),,所以點(diǎn)的坐標(biāo)為.所以的最大值為,取得最大值時(shí)點(diǎn)的坐標(biāo)為.3、(2016年上海高考)有一塊正方形菜地,所在直線是一條小河,收貨的蔬菜可送到點(diǎn)或河邊運(yùn)走。于是,菜地分為兩個(gè)區(qū)域和,其中中的蔬菜運(yùn)到河邊較近,中的蔬菜運(yùn)到點(diǎn)較近,而菜地內(nèi)和的分界線上的點(diǎn)到河邊與到點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn)為的中點(diǎn),點(diǎn)的坐標(biāo)為(1,0),如圖求菜地內(nèi)的分界線的方程菜農(nóng)從蔬菜運(yùn)量估計(jì)出面積是面積的兩倍,由此得到面積的“閱歷值”為。設(shè)是上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以為一邊、另一邊過點(diǎn)的矩形的面積,與五邊形的面積,并推斷哪一個(gè)更接近于面積的閱歷值【解析】(1)因?yàn)樯系狞c(diǎn)到直線與到點(diǎn)的距離相等,所以是以為焦點(diǎn)、以為準(zhǔn)線的拋物線在正方形內(nèi)的部分,其方程為().(2)依題意,點(diǎn)的坐標(biāo)為.

所求的矩形面積為,而所求的五邊形面積為.矩形面積與“閱歷值”之差的肯定值為,而五邊形面積與“閱歷值”之差的肯定值為,所以五邊形面積更接近于面積的“閱歷值”.4、(2016年上海高考)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分. 雙曲線的左、右焦點(diǎn)分別為,直線過且與雙曲線交于兩點(diǎn)。(1)若的傾斜角為,是等邊三角形,求雙曲線的漸近線方程;(2)設(shè),若的斜率存在,且,求的斜率.【答案】(1).(2).【解析】(1)設(shè).由題意,,,,因?yàn)槭堑冗吶切危?,即,解得.故雙曲線的漸近線方程為.(2)由已知,,.設(shè),,直線.明顯.由,得.因?yàn)榕c雙曲線交于兩點(diǎn),所以,且.設(shè)的中點(diǎn)為.由即,知,故.而,,,所以,得,故的斜率為.5、(2016年四川高考)已知橢圓E:的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線=-3與橢圓E有且只有一個(gè)公共點(diǎn)T.(I)求橢圓E的方程與點(diǎn)T的坐標(biāo);()設(shè)O是坐標(biāo)原點(diǎn),直線l’平行于,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù)λ,使得∣∣2=λ∣∣·∣∣,并求λ的值.有方程組得.=1\*3①方程=1\*3①的判別式為,由,得,此方程=1\*3①的解為,所以橢圓E的方程為.點(diǎn)T坐標(biāo)為(2,1).由=2\*3②得.所以,同理,所以故存在常數(shù),使得.6、(2016年天津高考)設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.【解析】(2)(Ⅱ)解:設(shè)直線的斜率為(),則直線的方程為.設(shè),由方程組,消去,整理得.解得,或,由題意得,從而.由(Ⅰ)知,,設(shè),有,.由,得,所以,解得.因此直線的方程為.設(shè),由方程組消去,解得.在中,,即,化簡得,即,解得或.所以,直線的斜率的取值范圍為.7、(2016年全國I高考)設(shè)圓的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作的平行線交于點(diǎn)E.(I)證明為定值,并寫出點(diǎn)E的軌跡方程;(=2\*)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于兩點(diǎn),過B且與l垂直的直線與圓A交于兩點(diǎn),求四邊形面積的取值范圍.【解析】(Ⅰ)因?yàn)?,,故,所以,?又圓的標(biāo)準(zhǔn)方程為,從而,所以.由題設(shè)得,,,由橢圓定義可得點(diǎn)的軌跡方程為:().8、(2016年全國高考)已知橢圓的焦點(diǎn)在軸上,是的左頂點(diǎn),斜率為的直線交于兩點(diǎn),點(diǎn)在上,.(Ⅰ)當(dāng)時(shí),求的面積;(Ⅱ)當(dāng)時(shí),求的取值范圍.【解析】⑴當(dāng)時(shí),橢圓E的方程為,A點(diǎn)坐標(biāo)為,則直線的方程為.聯(lián)立并整理得,解得或,則因?yàn)椋砸驗(yàn)?,,所以,整理得,無實(shí)根,所以.所以的面積為.⑵直線的方程為,聯(lián)立并整理得,解得或,所以所以因?yàn)樗裕淼?,.因?yàn)闄E圓E的焦點(diǎn)在x軸,所以,即,整理得解得.9、(2016年全國高考)已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).(I)若在線段上,是的中點(diǎn),證明;()若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論