版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年山東省聊城市冠縣東古城鎮(zhèn)中學下學期初三數(shù)學試題期中考試試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.52.如圖,直線a∥b,直線分別交a,b于點A,C,∠BAC的平分線交直線b于點D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°3.下列運算錯誤的是()A.(m2)3=m6B.a(chǎn)10÷a9=aC.x3?x5=x8D.a(chǎn)4+a3=a74.估計的運算結(jié)果應在哪個兩個連續(xù)自然數(shù)之間()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣45.下列四個實數(shù)中,比5小的是()A. B. C. D.6.若關(guān)于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.7.下列計算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a78.下列運算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.9.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.4810.2cos30°的值等于()A.1 B. C. D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.12.化簡3m﹣2(m﹣n)的結(jié)果為_____.13.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.14.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是__.15.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____.16.關(guān)于x的分式方程=2的解為正實數(shù),則實數(shù)a的取值范圍為_____.三、解答題(共8題,共72分)17.(8分)已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側(cè),則對角線的最小值是.18.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.19.(8分)試探究:小張在數(shù)學實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.20.(8分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).21.(8分)我國滬深股市交易中,如果買、賣一次股票均需付交易金額的作費用.張先生以每股5元的價格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時才能賣出?(精確到0.01元)22.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.23.(12分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)査結(jié)果繪制了如下尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:這次接受調(diào)查的市民總?cè)藬?shù)是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數(shù)是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).24.如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉(zhuǎn),使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關(guān)系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關(guān)系.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.2、C【解析】
根據(jù)平行線的性質(zhì)可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線,進而可得∠BAC的度數(shù),再根據(jù)補角定義可得答案.【詳解】因為a∥b,所以∠1=∠BAD=50°,因為AD是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點睛】本題考查的知識點是平行線的性質(zhì),解題關(guān)鍵是掌握兩直線平行,內(nèi)錯角相等.3、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數(shù)冪的乘法、除法的運算法則逐項進行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數(shù)冪的乘除法,熟練掌握各運算的運算法則是解題的關(guān)鍵.4、C【解析】根據(jù)二次根式的性質(zhì),可化簡得=﹣3=﹣2,然后根據(jù)二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之間.故選C.點睛:此題主要考查了二次根式的化簡和估算,關(guān)鍵是根據(jù)二次根式的性質(zhì)化簡計算,再二次根式的估算方法求解.5、A【解析】
首先確定無理數(shù)的取值范圍,然后再確定是實數(shù)的大小,進而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.【點睛】考查無理數(shù)的估算,掌握無理數(shù)估算的方法是解題的關(guān)鍵.通常使用夾逼法.6、B【解析】
將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.7、A【解析】
根據(jù)合并同類項法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項正確;B.,故本選項錯誤;C.,故本選項錯誤;D.,故本選項錯誤.故選:A.【點睛】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎,掌握運算法則是解題的關(guān)鍵.8、C【解析】
根據(jù)同底數(shù)冪的乘法法則對A進行判斷;根據(jù)積的乘方對B進行判斷;根據(jù)負整數(shù)指數(shù)冪的意義對C進行判斷;根據(jù)二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運算.9、D【解析】
由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.10、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【點睛】本題結(jié)合三角形全等考查了三角函數(shù)的知識.12、m+2n【解析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關(guān)鍵是掌握去括號與合并同類項的法則.13、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.14、1【解析】
列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為612=1故答案為:12【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、π﹣1.【解析】
連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點D為AB的中點,∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點D為AB的中點,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.16、a<2且a≠1【解析】
將a看做已知數(shù),表示出分式方程的解,根據(jù)解為非負數(shù)列出關(guān)于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數(shù),∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.三、解答題(共8題,共72分)17、(1);(2)圖象見解析,或;(3)【解析】
(1)將拋物線的解析式配成頂點式,即可得出頂點坐標;(2)根據(jù)拋物線經(jīng)過點M,用待定系數(shù)法求出拋物線的解析式,即可得出圖象,然后將縱坐標3代入拋物線的解析式中,求出橫坐標,然后將點再代入反比例函數(shù)的表達式中即可求出反比例函數(shù)的表示式;(3)設出A的坐標,表示出C,D的坐標,得到CD的長度,根據(jù)題意找到CD的最小值,因為AD的長度不變,所以當CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數(shù)圖象的交點坐標為或.將代入得:,.將代入得:,.綜上所述,反比例函數(shù)的表達式為或.(3)設點的坐標為,則點的坐標為,的坐標為.的長隨的增大而減小.矩形在其對稱軸的左側(cè),拋物線的對稱軸為,當時,的長有最小值,的最小值.的長度不變,當最小時,有最小值.的最小值故答案為:.【點睛】本題主要考查二次函數(shù),反比例函數(shù)與幾何綜合,掌握二次函數(shù),反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.18、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標為(4,2).②當∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點E的坐標為().③當∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點E的坐標為(4,2).綜上所述:當以B、D、E為頂點的三角形是直角三角形時點E的坐標為(4,2)、()、(4,2).點睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識,還考查了分類討論的數(shù)學思想,有一定的綜合性.19、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】
嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內(nèi)接正十邊形,∴如圖,當點A是圓內(nèi)接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內(nèi)接正十邊形的邊長為.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學會利用數(shù)形結(jié)合的思想思考問題,屬于中考壓軸題.20、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】
延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.21、至少漲到每股6.1元時才能賣出.【解析】
根據(jù)關(guān)系式:總售價-兩次交易費≥總成本+1000列出不等式求解即可.【詳解】解:設漲到每股x元時賣出,根據(jù)題意得1000x-(5000+1000x)×0.5%≥5000+1000,解這個不等式得x≥,即x≥6.1.答:至少漲到每股6.1元時才能賣出.【點睛】本題考查的是一元一次不等式在生活中的實際運用,解決本題的關(guān)鍵是讀懂題意根據(jù)“總售價-兩次交易費≥總成本+1000”列出不等關(guān)系式.22、(1)④⑤;(2);(3)或.【解析】
(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關(guān)系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版酒店承包經(jīng)營合同(含客房、餐飲及特色住宿體驗)3篇
- 北京外國語大學《英語在線閱讀2》2023-2024學年第一學期期末試卷
- 石灰石采購合同
- 老馬養(yǎng)殖課程設計思路
- 二零二五年學校食堂食材供應承包合同范本3篇
- 破樁頭施工合同
- 電路課程設計感受與體會
- 機器人編程創(chuàng)意課程設計
- 二零二五年醫(yī)院水電暖安裝工程合同
- 泵站課程設計收獲
- 《特種設備重大事故隱患判定準則》知識培訓
- 軍事理論-綜合版智慧樹知到期末考試答案章節(jié)答案2024年國防大學
- 2024年時事政治熱點題庫200道含完整答案(必刷)
- 叉車日常使用狀況點檢記錄表(日常檢查記錄)
- 沙特的礦產(chǎn)資源開發(fā)概況及其商機
- 高一生物必修一期末試題(附答案)
- 安全事故應急響應程序流程圖(共1頁)
- 三年級_上冊牛津英語期末試卷
- 損傷容限設計基本概念原理和方法PPT課件
- 水壓式沼氣池設計
- 巷道及采區(qū)車場設計
評論
0/150
提交評論