洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷含解析_第1頁
洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷含解析_第2頁
洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷含解析_第3頁
洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷含解析_第4頁
洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

洛陽市重點(diǎn)中學(xué)2023年初三下學(xué)期5月月考數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.用加減法解方程組時,若要求消去,則應(yīng)()A. B. C. D.2.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實(shí)數(shù)根 B.有兩個相等的實(shí)數(shù)根C.只有一個實(shí)數(shù)根 D.沒有實(shí)數(shù)根3.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:次序第一次第二次第三次第四次第五次甲命中的環(huán)數(shù)(環(huán))67868乙命中的環(huán)數(shù)(環(huán))510767根據(jù)以上數(shù)據(jù),下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數(shù)不同C.甲、乙成績的眾數(shù)相同 D.甲的成績更穩(wěn)定5.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠16.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.7.在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.8.若函數(shù)與y=﹣2x﹣4的圖象的交點(diǎn)坐標(biāo)為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.29.化簡的結(jié)果是()A. B. C. D.10.把直線l:y=kx+b繞著原點(diǎn)旋轉(zhuǎn)180°,再向左平移1個單位長度后,經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,4),則直線l的表達(dá)式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2二、填空題(本大題共6個小題,每小題3分,共18分)11.將2.05×10﹣3用小數(shù)表示為__.12.如圖,在直角坐標(biāo)系中,正方形的中心在原點(diǎn)O,且正方形的一組對邊與x軸平行,點(diǎn)P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點(diǎn).若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為▲.13.為選拔一名選手參加全國中學(xué)生游泳錦標(biāo)賽自由泳比賽,我市四名中學(xué)生參加了男子100米自由泳訓(xùn)練,他們成績的平均數(shù)及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果選拔一名學(xué)生去參賽,應(yīng)派_________去.14.正十二邊形每個內(nèi)角的度數(shù)為.15.已知點(diǎn)A,B的坐標(biāo)分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點(diǎn)A與點(diǎn)A′對應(yīng),點(diǎn)B與點(diǎn)B′對應(yīng),若點(diǎn)A′的坐標(biāo)為(2,﹣3),則點(diǎn)B′的坐標(biāo)為________.16.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點(diǎn)A,點(diǎn)B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點(diǎn),順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請回答:該尺規(guī)作圖的依據(jù)是_____.三、解答題(共8題,共72分)17.(8分)如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數(shù)量關(guān)系是,位置關(guān)系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚€等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.18.(8分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).19.(8分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線交y軸于點(diǎn)E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點(diǎn)A作BE的平行線交拋物線于另一點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個動點(diǎn),連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點(diǎn)O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點(diǎn)Q,若△BOQ為等腰三角形,請直接寫出點(diǎn)Q的坐標(biāo).20.(8分)如圖,在平面直角坐標(biāo)系中,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上,C點(diǎn)的坐標(biāo)為(1,0),拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.(1)求該拋物線的解析式;(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點(diǎn)P是拋物線上一動點(diǎn),且在直線AB上方,過點(diǎn)P作AB的垂線段,垂足為Q點(diǎn).當(dāng)PQ=時,求P點(diǎn)坐標(biāo).21.(8分)如圖,已知△ABC是等邊三角形,點(diǎn)D在AC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.22.(10分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).23.(12分)如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.24.若關(guān)于的方程無解,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應(yīng)①×5+②×3,

故選C【點(diǎn)睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.2、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實(shí)數(shù)根.故選A.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實(shí)數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實(shí)數(shù)根;當(dāng)?<0時,一元二次方程沒有實(shí)數(shù)根.3、C【解析】

在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點(diǎn)睛】本題考查勾股定理的運(yùn)用,利用梯子長度不變找到斜邊是關(guān)鍵.4、D【解析】

根據(jù)已知條件中的數(shù)據(jù)計(jì)算出甲、乙的方差,中位數(shù)和眾數(shù)后,再進(jìn)行比較即可.【詳解】把甲命中的環(huán)數(shù)按大小順序排列為:6,6,7,8,8,故中位數(shù)為7;把乙命中的環(huán)數(shù)按大小順序排列為:5,6,7,7,10,故中位數(shù)為7;∴甲、乙成績的中位數(shù)相同,故選項(xiàng)B錯誤;根據(jù)表格中數(shù)據(jù)可知,甲的眾數(shù)是8環(huán),乙的眾數(shù)是7環(huán),∴甲、乙成績的眾數(shù)不同,故選項(xiàng)C錯誤;甲命中的環(huán)數(shù)的平均數(shù)為:x甲乙命中的環(huán)數(shù)的平均數(shù)為:x乙∴甲的平均數(shù)等于乙的平均數(shù),故選項(xiàng)A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因?yàn)?.8>0.8,所以甲的穩(wěn)定性大,故選項(xiàng)D正確.故選D.【點(diǎn)睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.同時還考查了眾數(shù)的中位數(shù)的求法.5、D【解析】

先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結(jié)論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點(diǎn)睛】本題考查的是平行線的判定,用到的知識點(diǎn)為:兩直線平行,內(nèi)錯角相等,同旁內(nèi)角互補(bǔ).6、A【解析】

根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點(diǎn)睛】本題考查的知識點(diǎn)是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.7、A【解析】

根據(jù)軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點(diǎn)睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【解析】

求出兩函數(shù)組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點(diǎn)坐標(biāo)是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題和解方程組等知識點(diǎn),關(guān)鍵是求出a、b的值.9、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計(jì)算即可.【詳解】原式=×=×(+1)=2+.故選D.【點(diǎn)睛】本題主要考查二次根式的加減乘除混合運(yùn)算,掌握二次根式的混合運(yùn)算法則是解題關(guān)鍵.10、B【解析】

先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點(diǎn)旋轉(zhuǎn)180°即可得到直線l.【詳解】解:設(shè)直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點(diǎn)旋轉(zhuǎn)180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達(dá)式是y=2x?2.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關(guān)于原點(diǎn)對稱的規(guī)律是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法-原數(shù),用科學(xué)記數(shù)法表示的數(shù)還原成原數(shù)時,n>0時,n是幾,小數(shù)點(diǎn)就向右移幾位;n<0時,n是幾,小數(shù)點(diǎn)就向左移幾位.12、.【解析】待定系數(shù)法,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,反比例函數(shù)圖象的對稱性,正方形的性質(zhì).【分析】由反比例函數(shù)的對稱性可知陰影部分的面積和正好為小正方形面積的,設(shè)小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達(dá)式,再根據(jù)點(diǎn)P(2a,a)在直線AB上可求出a的值,從而得出反比例函數(shù)的解析式:∵反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱,∴陰影部分的面積和正好為小正方形的面積.設(shè)正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點(diǎn)O,∴直線AB的解析式為:x=2.∵點(diǎn)P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點(diǎn)P在反比例函數(shù)(k>0)的圖象上,∴k=2×3=2.∴此反比例函數(shù)的解析式為:.13、乙【解析】

∵丁〉甲乙=丙,∴從乙和丙中選擇一人參加比賽,

∵S

乙2<S

丙2,

∴選擇乙參賽,

故答案是:乙.14、【解析】

首先求得每個外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補(bǔ)角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數(shù)是:=30°,則每一個內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.15、(5,﹣8)【解析】

各對應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,那么讓點(diǎn)B的橫坐標(biāo)加4,縱坐標(biāo)減6即為點(diǎn)B′的坐標(biāo).【詳解】由A(-2,3)的對應(yīng)點(diǎn)A′的坐標(biāo)為(2,-13),坐標(biāo)的變化規(guī)律可知:各對應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,∴點(diǎn)B′的橫坐標(biāo)為1+4=5;縱坐標(biāo)為-2-6=-8;即所求點(diǎn)B′的坐標(biāo)為(5,-8).故答案為(5,-8)【點(diǎn)睛】此題主要考查了坐標(biāo)與圖形的變化-平移,解決本題的關(guān)鍵是根據(jù)已知對應(yīng)點(diǎn)找到各對應(yīng)點(diǎn)之間的變化規(guī)律.16、相等的圓心角所對的弦相等,直徑所對的圓周角是直角.【解析】

根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點(diǎn)在這條線段的中垂線上;兩點(diǎn)確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【點(diǎn)睛】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點(diǎn)在于熟知相關(guān)基本知識點(diǎn).三、解答題(共8題,共72分)17、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結(jié)論仍然成立【解析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進(jìn)而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結(jié)論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結(jié)論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結(jié)論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結(jié)論都能成立.考點(diǎn):正方形,等邊三角形,三角形全等18、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.19、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點(diǎn)代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點(diǎn)的坐標(biāo),最大值=,進(jìn)而計(jì)算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點(diǎn)P作軸交AD于點(diǎn)G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時,作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時,當(dāng)時,當(dāng)時,Q3綜上所述,滿足條件點(diǎn)點(diǎn)Q坐標(biāo)為或或或20、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P點(diǎn)坐標(biāo)為(﹣1,2).【解析】分析:(1)、根據(jù)題意得出點(diǎn)A和點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出二次函數(shù)的解析式;(2)、根據(jù)函數(shù)圖像得出不等式的解集;(3)、作PE⊥x軸于點(diǎn)E,交AB于點(diǎn)D,根據(jù)題意得出∠PDQ=∠ADE=45°,PD==1,然后設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),根據(jù)PD的長度得出x的值,從而得出點(diǎn)P的坐標(biāo).詳解:(1)當(dāng)y=0時,x+2=0,解得x=﹣2,當(dāng)x=0時,y=0+2=2,則點(diǎn)A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c得,解得.∴該拋物線的解析式為y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,則不等式ax2+(b﹣1)x+c>2的解集為﹣2<x<0;(3)如圖,作PE⊥x軸于點(diǎn)E,交AB于點(diǎn)D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,∴P點(diǎn)坐標(biāo)為(﹣1,2).點(diǎn)睛:本題主要考查的是二次函數(shù)的性質(zhì)以及直角三角形的性質(zhì),屬于基礎(chǔ)題型.利用待定系數(shù)法求出函數(shù)解析式是解決這個問題的關(guān)鍵.21、詳見解析【解析】

由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握等邊三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.22、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】

(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時,x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.23、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論