山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷含解析_第1頁
山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷含解析_第2頁
山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷含解析_第3頁
山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷含解析_第4頁
山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市重點中學2023年初三暑期調研考試數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米2.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.3.不等式組的正整數(shù)解的個數(shù)是()A.5 B.4 C.3 D.24.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°5.據(jù)相關報道,開展精準扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學記數(shù)法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1076.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.7.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.8.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學將機器人運行時間設為t秒,機器人到點A的距離設為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t=3時,機器人一定位于點O;③機器人一定經過點D;④機器人一定經過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④9.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°10.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t11.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=212.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.14.請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.A.如圖,在平面直角坐標系中,點的坐標為,沿軸向右平移后得到,點的對應點是直線上一點,則點與其對應點間的距離為__________.B.比較__________的大?。?5.如圖,在平面直角坐標系中,函數(shù)y=x和y=﹣x的圖象分別為直線l1,l2,過點A1(1,﹣)作x軸的垂線交11于點A2,過點A2作y軸的垂線交l2于點A3,過點A3作x軸的垂線交l1于點A4,過點A4作y軸的垂線交l2于點A5,…依次進行下去,則點A2018的橫坐標為_____.16.如圖,五邊形是正五邊形,若,則__________.17.完全相同的3個小球上面分別標有數(shù)-2、-1、1,將其放入一個不透明的盒子中后搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數(shù)之和是負數(shù)的概率是________.18.如圖,直線a、b相交于點O,若∠1=30°,則∠2=___三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?20.(6分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關于某條直線對稱?若是,請在圖上畫出這條對稱軸.21.(6分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣222.(8分)某工廠計劃在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.求原計劃每天生產的零件個數(shù)和規(guī)定的天數(shù).為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數(shù)比20個工人原計劃每天生產的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數(shù).23.(8分)關于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數(shù)根,求m的值;(2)若m為負數(shù),判斷方程根的情況.24.(10分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.25.(10分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?26.(12分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.27.(12分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.2、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.3、C【解析】

先解不等式組得到-1<x≤3,再找出此范圍內的正整數(shù).【詳解】解不等式1-2x<3,得:x>-1,

解不等式≤2,得:x≤3,

則不等式組的解集為-1<x≤3,

所以不等式組的正整數(shù)解有1、2、3這3個,

故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關鍵是正確得出一元一次不等式組的解集.4、A【解析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.5、D【解析】試題解析:55000000=5.5×107,故選D.考點:科學記數(shù)法—表示較大的數(shù)6、A【解析】

設甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.7、C【解析】

根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.8、C【解析】

根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當從B出發(fā)時,不經過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.9、B【解析】

連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內接四邊形的性質是關鍵.10、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.11、A【解析】

根據(jù)二次根式的性質對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.12、B【解析】

根據(jù)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側,絕對值大的反而小.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m<﹣1.【解析】

根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.14、5>【解析】

A:根據(jù)平移的性質得到OA′=OA,OO′=BB′,根據(jù)點A′在直線求出A′的橫坐標,進而求出OO′的長度,最后得到BB′的長度;B:根據(jù)任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進行比較.【詳解】A:由平移的性質可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以OO′=5,又因為OO′=BB′,所以點B與其對應點B′間的距離為5.故答案為5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根據(jù)正切函數(shù)與余弦函數(shù)圖像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【點睛】本題主要考查圖形的平移、一次函數(shù)的解析式和三角函數(shù)的圖像,熟練掌握這些知識并靈活運用是解答的關鍵.15、1【解析】

根據(jù)題意可以發(fā)現(xiàn)題目中各點的坐標變化規(guī)律,從而可以解答本題.【詳解】解:由題意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴點A2018的橫坐標為:1,故答案為1.【點睛】本題考查一次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,找出題目中點的橫坐標的變化規(guī)律.16、72【解析】分析:延長AB交于點F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個內角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質和正五邊形的性質,正確把握五邊形的性質是解題關鍵.17、【解析】

畫樹狀圖列出所有等可能結果,從中找到能兩次摸到的球上數(shù)之和是負數(shù)的結果,根據(jù)概率公式計算可得.【詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結果,其中兩次摸到的球上數(shù)之和是負數(shù)的有6種結果,所以兩次摸到的球上數(shù)之和是負數(shù)的概率為,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、30°【解析】因∠1和∠2是鄰補角,且∠1=30°,由鄰補角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=2x,OA=,(2)是一個定值,,(3)當時,E點只有1個,當時,E點有2個?!窘馕觥浚?)把點A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.(2)是一個定值,理由如下:如答圖1,過點Q作QG⊥y軸于點G,QH⊥x軸于點H.①當QH與QM重合時,顯然QG與QN重合,此時;②當QH與QM不重合時,∵QN⊥QM,QG⊥QH不妨設點H,G分別在x、y軸的正半軸上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,當點P、Q在拋物線和直線上不同位置時,同理可得.①①如答圖2,延長AB交x軸于點F,過點F作FC⊥OA于點C,過點A作AR⊥x軸于點R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴點F(,0),設點B(x,),過點B作BK⊥AR于點K,則△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴點B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5(求AB也可采用下面的方法)設直線AF為y=kx+b(k≠0)把點A(3,6),點F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5在△ABE與△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.設OE=x,則AE=﹣x(),由△ABE∽△OED得,∴∴()∴頂點為(,)如答圖3,當時,OE=x=,此時E點有1個;當時,任取一個m的值都對應著兩個x值,此時E點有2個.∴當時,E點只有1個當時,E點有2個20、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1,見解析.【解析】

(1)根據(jù)軸對稱圖形的性質,找出A、B、C的對稱點A1、B1、C1,畫出圖形即可;(2)根據(jù)平移的性質,△ABC向右平移6個單位,A、B、C三點的橫坐標加6,縱坐標不變;(1)根據(jù)軸對稱圖形的性質和頂點坐標,可得其對稱軸是l:x=1.【詳解】(1)由圖知,A(0,4),B(﹣2,2),C(﹣1,1),∴點A、B、C關于y軸對稱的對稱點為A1(0,4)、B1(2,2)、C1(1,1),連接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6個單位,∴A、B、C三點的橫坐標加6,縱坐標不變,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1.【點睛】本題考查了軸對稱圖形的性質和作圖﹣平移變換,作圖時要先找到圖形的關鍵點,分別把這幾個關鍵點按照平移的方向和距離確定對應點后,再順次連接對應點即可得到平移后的圖形.21、1.【解析】

按照實數(shù)的運算順序進行運算即可.【詳解】原式=1.【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及絕對值,熟練掌握各個知識點是解題的關鍵.22、(1)2400個,10天;(2)1人.【解析】

(1)設原計劃每天生產零件x個,根據(jù)相等關系“原計劃生產24000個零件所用時間=實際生產(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產的零件個數(shù),再代入即可求得規(guī)定天數(shù);(2)設原計劃安排的工人人數(shù)為y人,根據(jù)“(5組機器人生產流水線每天生產的零件個數(shù)+原計劃每天生產的零件個數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數(shù).【詳解】解:(1)解:設原計劃每天生產零件x個,由題意得,,解得x=2400,經檢驗,x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).答:原計劃每天生產零件2400個,規(guī)定的天數(shù)是10天.(2)設原計劃安排的工人人數(shù)為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數(shù)為1人.【點睛】本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.23、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數(shù)根,

∴m2-(2m-3)m+m2+1=1,

∴m=?;

(2)△=b2-4ac=-12m+5,

∵m<1,

∴-12m>1.

∴△=-12m+5>1.

∴此方程有兩個不相等的實數(shù)根.點睛:考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.24、(1)150,(1)證明見解析(3)【解析】

(1)根據(jù)旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉變換的性質可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論