版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省宜賓市六校聯(lián)考2023屆注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm2.關(guān)于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.23.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.4.如圖,在射線AB上順次取兩點(diǎn)C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點(diǎn)A沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點(diǎn)G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是()A. B. C. D.5.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解6.下列四個實(shí)數(shù)中是無理數(shù)的是()A.2.5B.1037.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°8.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點(diǎn)A恰好落在BC上的點(diǎn)D處,點(diǎn)CE=1,AC=4,則下列結(jié)論一定正確的個數(shù)是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個9.在實(shí)數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.410.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點(diǎn)D,交邊AC于點(diǎn)E,如果設(shè)=,=,用,表示,那么=___.12.對于任意不相等的兩個實(shí)數(shù),定義運(yùn)算※如下:※=,如3※2==.那么8※4=.13.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.算術(shù)平方根等于本身的實(shí)數(shù)是__________.15.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機(jī)摸出一個球,那么所摸到的球恰好為紅球的概率是
________.16.化簡的結(jié)果等于__.三、解答題(共8題,共72分)17.(8分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點(diǎn),求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點(diǎn)的橫坐標(biāo)為4,則另一個交點(diǎn)的坐標(biāo)為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點(diǎn)A(3,0),連接AC,點(diǎn)P是拋物線位于線段AC下方圖象上的任意一點(diǎn),求△PAC面積的最大值.18.(8分)某初中學(xué)校組織200位同學(xué)參加義務(wù)植樹活動.甲、乙兩位同學(xué)分別調(diào)查了30位同學(xué)的植樹情況,并將收集的數(shù)據(jù)進(jìn)行了整理,繪制成統(tǒng)計表1和表2:表1:甲調(diào)查九年級30位同學(xué)植樹情況每人植樹棵數(shù)78910人數(shù)36156表2:乙調(diào)查三個年級各10位同學(xué)植樹情況每人植樹棵數(shù)678910人數(shù)363126根據(jù)以上材料回答下列問題:(1)關(guān)于于植樹棵數(shù),表1中的中位數(shù)是棵;表2中的眾數(shù)是棵;(2)你認(rèn)為同學(xué)(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動情況;(3)在問題(2)的基礎(chǔ)上估計本次活動200位同學(xué)一共植樹多少棵?19.(8分)有4張正面分別標(biāo)有數(shù)字﹣1,2,﹣3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從4張卡片中隨機(jī)摸出一張不放回,將該卡片上的數(shù)字記為m,在隨機(jī)抽取1張,將卡片的數(shù)字即為n.(1)請用列表或樹狀圖的方式把(m,n)所有的結(jié)果表示出來.(2)求選出的(m,n)在二、四象限的概率.20.(8分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道上確定點(diǎn)D,使CD與垂直,測得CD的長等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.21.(8分)如圖,AC是⊙O的直徑,點(diǎn)P在線段AC的延長線上,且PC=CO,點(diǎn)B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點(diǎn),⊙O的半徑為5cm時,當(dāng)弧CD長為時,四邊形ADPB為菱形,當(dāng)弧CD長為時,四邊形ADCB為矩形.22.(10分)已知點(diǎn)P,Q為平面直角坐標(biāo)系xOy中不重合的兩點(diǎn),以點(diǎn)P為圓心且經(jīng)過點(diǎn)Q作⊙P,則稱點(diǎn)Q為⊙P的“關(guān)聯(lián)點(diǎn)”,⊙P為點(diǎn)Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點(diǎn)E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點(diǎn)”為______;(2)若點(diǎn)P(2,0),點(diǎn)Q(3,n),⊙Q為點(diǎn)P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點(diǎn)D(0,2),點(diǎn)H(m,2),⊙D是點(diǎn)H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點(diǎn)A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍.23.(12分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點(diǎn)C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.24.如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運(yùn)用三角形三邊關(guān)系.2、D【解析】
解不等式得到x≥m+3,再列出關(guān)于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關(guān)于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點(diǎn):不等式的解集3、C【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當(dāng)時,這個數(shù)為,故選:C.【點(diǎn)睛】本題屬于規(guī)律題,準(zhǔn)確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關(guān)鍵.4、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)、相似等知識,解題的關(guān)鍵是根據(jù)已知得出△ACG∽△ADH.5、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡公分母進(jìn)行檢驗(yàn).【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點(diǎn)睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關(guān)鍵.6、C【解析】本題主要考查了無理數(shù)的定義.根據(jù)無理數(shù)的定義:無限不循環(huán)小數(shù)是無理數(shù)即可求解.解:A、2.5是有理數(shù),故選項(xiàng)錯誤;B、103C、π是無理數(shù),故選項(xiàng)正確;D、1.414是有理數(shù),故選項(xiàng)錯誤.故選C.7、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點(diǎn)睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.8、D【解析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點(diǎn)睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.9、C【解析】在實(shí)數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.10、B【解析】
首先利用平行線的性質(zhì)得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進(jìn)而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵M(jìn)F∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵將△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故選B.【點(diǎn)睛】主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點(diǎn)睛】本題考查三角形的重心,平行線的性質(zhì),平面向量等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.12、【解析】
根據(jù)新定義的運(yùn)算法則進(jìn)行計算即可得.【詳解】∵※=,∴8※4=,故答案為.13、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點(diǎn)睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考常考題型.14、0或1【解析】根據(jù)負(fù)數(shù)沒有算術(shù)平方根,一個正數(shù)的算術(shù)平方根只有一個,1和0的算術(shù)平方根等于本身,即可得出答案.解:1和0的算術(shù)平方根等于本身.故答案為1和0“點(diǎn)睛”本題考查了算術(shù)平方根的知識,注意掌握1和0的算術(shù)平方根等于本身.15、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點(diǎn):概率公式.16、.【解析】
先通分變?yōu)橥帜阜质剑缓蟾鶕?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點(diǎn)睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.三、解答題(共8題,共72分)17、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當(dāng)a=時,△PAC的面積取最大值,最大值為【解析】
(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點(diǎn),利用根的判別式△=0,即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點(diǎn)的坐標(biāo);(4)將點(diǎn)A的坐標(biāo)代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法可求出直線AC的解析式,過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)Q,設(shè)點(diǎn)P的坐標(biāo)為(a,a2-2a-2),則點(diǎn)Q的坐標(biāo)為(a,a-2),點(diǎn)D的坐標(biāo)為(a,0),根據(jù)三角形的面積公式可找出S△ACP關(guān)于a的函數(shù)關(guān)系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點(diǎn),∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點(diǎn)的橫坐標(biāo)為4,∴另一交點(diǎn)的橫坐標(biāo)為2×2﹣4=﹣2,∴另一個交點(diǎn)的坐標(biāo)為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點(diǎn)A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設(shè)直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)Q,如圖所示.設(shè)點(diǎn)P的坐標(biāo)為(a,a2﹣2a﹣2),則點(diǎn)Q的坐標(biāo)為(a,a﹣2),點(diǎn)D的坐標(biāo)為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當(dāng)a=時,△PAC的面積取最大值,最大值為.【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)以及二次函數(shù)的最值,解題的關(guān)鍵是:(2)代入點(diǎn)的坐標(biāo)求出n值;(2)牢記當(dāng)△=b2-4ac=0時拋物線與x軸只有一個交點(diǎn);(2)利用二次函數(shù)的對稱軸求出另一交點(diǎn)的坐標(biāo);(4)利用三角形的面積公式找出S△ACP關(guān)于a的函數(shù)關(guān)系式.18、(1)9,9;(2)乙;(3)1680棵;【解析】
(1)根據(jù)中位數(shù)定義:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案;(2)根據(jù)樣本要具有代表性可得乙同學(xué)抽取的樣本比較有代表性;(3)利用樣本估計總體的方法計算即可.【詳解】(1)表1中30位同學(xué)植樹情況的中位數(shù)是9棵,表2中的眾數(shù)是9棵;故答案為:9,9;(2)乙同學(xué)所抽取的樣本能更好反映此次植樹活動情況;故答案為:乙;(3)由題意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活動200位同學(xué)一共植樹1680棵.【點(diǎn)睛】本題考查了抽樣調(diào)查,以及中位數(shù),解題的關(guān)鍵是掌握中位數(shù)定義及抽樣調(diào)查抽取的樣本要具有代表性.19、(1)詳見解析;(2)P=.【解析】試題分析:(1)樹狀圖列舉所有結(jié)果.(2)用在第二四象限的點(diǎn)數(shù)除以所有結(jié)果.試題解析:(1)畫樹狀圖得:
則(m,n)共有12種等可能的結(jié)果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),
∴所選出的m,n在第二、三四象限的概率為:P==點(diǎn)睛:(1)利用頻率估算法:大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)P就叫做事件A的概率(有些時候用計算出A發(fā)生的所有頻率的平均值作為其概率).(2)定義法:如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,考察事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P.(3)列表法:當(dāng)一次試驗(yàn)要設(shè)計兩個因素,可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常采用列表法.其中一個因素作為行標(biāo),另一個因素作為列標(biāo).(4)樹狀圖法:當(dāng)一次試驗(yàn)要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.20、(1)24.2米(2)超速,理由見解析【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.21、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當(dāng)四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點(diǎn)睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質(zhì)、菱形的性質(zhì)、弧長公式等知識,準(zhǔn)確添加輔助
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度Logo設(shè)計及品牌形象重塑合同
- 家具供應(yīng)合同范本
- 2024簡單的農(nóng)村土地轉(zhuǎn)讓合同
- 二手房交易合同-范本
- 2024上市公司合同管理辦法
- 標(biāo)準(zhǔn)店面租賃合同書樣本
- 2024內(nèi)粉墻刷白合同
- 2024年借款延期合同范本
- 2024墻紙采購合同
- 2024小區(qū)綠化種植合同
- 2024-2030年鋁型材行業(yè)市場深度調(diào)研及前景趨勢與投資戰(zhàn)略研究報告
- 2024-2030年辣椒種植行業(yè)市場深度分析及發(fā)展策略研究報告
- 變電站綠化維護(hù)施工方案
- 校園展美 課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級上冊
- 2024版《糖尿病健康宣教》課件
- ktv保安管理制度及崗位職責(zé)(共5篇)
- 腦出血試題完整版本
- 義務(wù)教育信息科技課程標(biāo)準(zhǔn)(2022年版)考試題庫及答案
- 建筑施工安全生產(chǎn)責(zé)任書
- 新員工三級安全教育考試試題參考答案
- 公司年會策劃及執(zhí)行服務(wù)合同
評論
0/150
提交評論